Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses. / Geiser, Christian; Keller, Brian T.; Lockhart, Ginger et al.
In: Behavior Research Methods, Vol. 47, No. 1, 03.2015, p. 172-203.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Geiser C, Keller BT, Lockhart G, Eid M, Cole DA, Koch T. Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses. Behavior Research Methods. 2015 Mar;47(1):172-203. Epub 2014 Mar 21. doi: 10.3758/s13428-014-0457-z

Bibtex

@article{c86bc1f8df26452f9ed2fbf8b2a849fb,
title = "Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses",
abstract = "Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.",
keywords = "Sociology, state variability versus trait change, Latent stat-trait analysis, measurement invariance, Latent growth curve models, Model misspecification",
author = "Christian Geiser and Keller, {Brian T.} and Ginger Lockhart and Michael Eid and Cole, {David A.} and Tobias Koch",
note = "Publisher Copyright: {\textcopyright} 2014, Psychonomic Society, Inc.",
year = "2015",
month = mar,
doi = "10.3758/s13428-014-0457-z",
language = "English",
volume = "47",
pages = "172--203",
journal = "Behavior Research Methods",
issn = "1554-351X",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Distinguishing state variability from trait change in longitudinal data

T2 - The role of measurement (non)invariance in latent state-trait analyses

AU - Geiser, Christian

AU - Keller, Brian T.

AU - Lockhart, Ginger

AU - Eid, Michael

AU - Cole, David A.

AU - Koch, Tobias

N1 - Publisher Copyright: © 2014, Psychonomic Society, Inc.

PY - 2015/3

Y1 - 2015/3

N2 - Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.

AB - Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.

KW - Sociology

KW - state variability versus trait change

KW - Latent stat-trait analysis

KW - measurement invariance

KW - Latent growth curve models

KW - Model misspecification

UR - http://www.scopus.com/inward/record.url?scp=84896419003&partnerID=8YFLogxK

U2 - 10.3758/s13428-014-0457-z

DO - 10.3758/s13428-014-0457-z

M3 - Journal articles

C2 - 24652650

AN - SCOPUS:84896419003

VL - 47

SP - 172

EP - 203

JO - Behavior Research Methods

JF - Behavior Research Methods

SN - 1554-351X

IS - 1

ER -

Recently viewed

Publications

  1. Understanding storytelling in the context of information systems
  2. Discourse, practice, policy and organizing
  3. Comparison of three methods of length compensation in a parallel kinematic and their equivalence conditions
  4. On the Equivalence of Transmission Problems in Nonoverlapping Domain Decomposition Methods for Quasilinear PDEs
  5. An Optimization Approach for Crew Rostering in Public Bus Transit
  6. Perceptions of Resource Criticality in Times of Resource Scarcity
  7. Aspect-oriented software development
  8. Switching cascade controllers combined with a feedforward regulation for an aggregate actuator in automotive applications
  9. Modeling Bolt Load Retention of Ca modified AS41 using compliance-creep method
  10. Software and Web-Based Tools for Sustainability Management in Micro-, Small- and Medium-Sized Enterprises
  11. System and action theory
  12. Image, Process, Performance, Machine
  13. Determinants of mandatory goodwill disclosure
  14. Public Value
  15. Soziale Netzwerkanalyse
  16. Repatriation, Public Programming, and the DEAI Toolkit
  17. Multitrait-multimethod-analysis
  18. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting
  19. Public Value
  20. Die Unternehmergesellschaft
  21. Tundra Trait Team
  22. Dynamic Capabilities in Sustainable Supply Chain Management
  23. Introduction
  24. Working with Research Integrity—Guidance for Research Performing Organisations
  25. Normalitätskonstruktion und Selbstbilder erwachsener Reitender mit einer Körper- oder Sinnesbehinderung
  26. Technikvergessenheit?
  27. Deciphering Sustainable Consumption: Understanding Motives and Heuristic Cues in the Context of Personal Care Products
  28. Introduction: The Political Project of Corbynism