Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses. / Geiser, Christian; Keller, Brian T.; Lockhart, Ginger et al.
in: Behavior Research Methods, Jahrgang 47, Nr. 1, 03.2015, S. 172-203.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Geiser C, Keller BT, Lockhart G, Eid M, Cole DA, Koch T. Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses. Behavior Research Methods. 2015 Mär;47(1):172-203. Epub 2014 Mär 21. doi: 10.3758/s13428-014-0457-z

Bibtex

@article{c86bc1f8df26452f9ed2fbf8b2a849fb,
title = "Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses",
abstract = "Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.",
keywords = "Sociology, state variability versus trait change, Latent stat-trait analysis, measurement invariance, Latent growth curve models, Model misspecification",
author = "Christian Geiser and Keller, {Brian T.} and Ginger Lockhart and Michael Eid and Cole, {David A.} and Tobias Koch",
note = "Publisher Copyright: {\textcopyright} 2014, Psychonomic Society, Inc.",
year = "2015",
month = mar,
doi = "10.3758/s13428-014-0457-z",
language = "English",
volume = "47",
pages = "172--203",
journal = "Behavior Research Methods",
issn = "1554-351X",
publisher = "Springer Nature AG",
number = "1",

}

RIS

TY - JOUR

T1 - Distinguishing state variability from trait change in longitudinal data

T2 - The role of measurement (non)invariance in latent state-trait analyses

AU - Geiser, Christian

AU - Keller, Brian T.

AU - Lockhart, Ginger

AU - Eid, Michael

AU - Cole, David A.

AU - Koch, Tobias

N1 - Publisher Copyright: © 2014, Psychonomic Society, Inc.

PY - 2015/3

Y1 - 2015/3

N2 - Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.

AB - Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.

KW - Sociology

KW - state variability versus trait change

KW - Latent stat-trait analysis

KW - measurement invariance

KW - Latent growth curve models

KW - Model misspecification

UR - http://www.scopus.com/inward/record.url?scp=84896419003&partnerID=8YFLogxK

U2 - 10.3758/s13428-014-0457-z

DO - 10.3758/s13428-014-0457-z

M3 - Journal articles

C2 - 24652650

AN - SCOPUS:84896419003

VL - 47

SP - 172

EP - 203

JO - Behavior Research Methods

JF - Behavior Research Methods

SN - 1554-351X

IS - 1

ER -

DOI

Zuletzt angesehen

Publikationen

  1. From "cracking the orthographic code" to "playing with language"
  2. Intraspecific trait variation increases species diversity in a trait-based grassland model
  3. Developing spatial biophysical accounting for multiple ecosystem services
  4. Context-sensitive adjustment of pointing in great apes
  5. Rapid allocation of temporal attention in the Attentional Blink Paradigm
  6. Executive function and Language Learning
  7. The shooter bias: Replicating the classic effect and introducing a novel paradigm
  8. Transcending Methodological Nationalism through a Transversal Method?
  9. SoilTemp: A global database of near-surface temperature
  10. The generative drawing principle in multimedia learning
  11. Simon Denny
  12. Modeling the cost-effectiveness of health care systems for alcohol use disorders
  13. Melodías a través del océano
  14. Contrasting requests in Inner Circle Englishes
  15. The Parameters of Refugeeism and Flight
  16. Multitrait-Multimethod Analysis
  17. Rethinking the Spatiality of Spatial Planning
  18. Dietary patterns of children on three indigenous societies
  19. The Pricing of Default-free Interest Rate Cap, Floor, and Collar Agreements
  20. Migration's lines of flight.
  21. Illegal Migration in Postfordism
  22. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient
  23. Scope of the book wastewater reuse and current challenges
  24. Increasing skepticism toward potential liars
  25. Oder/Denken
  26. Individual differences and cognitive load theory
  27. Semi-polar root exudates in natural grassland communities
  28. The State and Healthcare
  29. Rethinking art's relation to its social context: the example of the Artist Placement Group
  30. The Multiple Self Objection to the Prudential Lifespan Account
  31. Contaminated sediment in Ramsar wetlands; A challenge towards sustainable management of sensitive ecosystems
  32. Evaluating social learning in participatory mapping of ecosystem services
  33. Student Feedback as a Source for Reflection in Practical Phases of Teacher Education
  34. Leaf Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) biochemical profile of grassland plant species related to land-use intensity
  35. Information seeking about tool properties in great apes