Global Finite-Time Stabilization of Planar Linear Systems With Actuator Saturation
Research output: Journal contributions › Journal articles › Research › peer-review
Authors
This brief addresses the problem of global finite-time stabilization of planar linear systems subject to actuator saturation. A simple saturated proportional-derivative controller is proposed. Lyapunov stability theory and geometric homogeneity technique are employed to show global finite-time stability. The appealing features of the proposed control include the very simple structure and intuitive construction that involves only a single saturation function and the ability to ensure global finite-time stabilization and actuator saturation is not violated. The proposed control actually provides an easy solution for high-quality stabilization of a large class of planar systems in the presence of actuator saturation.
| Original language | English | 
|---|---|
| Article number | 7738419 | 
| Journal | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS | 
| Volume | 64 | 
| Issue number | 8 | 
| Pages (from-to) | 947-951 | 
| Number of pages | 5 | 
| ISSN | 1549-7747 | 
| DOIs | |
| Publication status | Published - 08.2017 | 
- Electrical and Electronic Engineering
 
ASJC Scopus Subject Areas
- Actuator saturation, finite-time stability (FTS), global stability, planar systems, proportional-derivative (PD) control
 - Engineering
 
