Learning with animations and simulations in a computer-based learning environment about torques

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearch

Standard

Learning with animations and simulations in a computer-based learning environment about torques. / Ehmke, Timo; Wünscher, Thilo.
Educational Technology: Proceedings of the International Conference on ICT's in Education: Proceedings of the International Conference on ICT's in Education. ed. / A. Méndez-Vilas; J. A. M. González. Vol. 3 Consejería de Educación, Ciencia y Tecnología, 2002. p. 1426-1430.

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearch

Harvard

Ehmke, T & Wünscher, T 2002, Learning with animations and simulations in a computer-based learning environment about torques. in A Méndez-Vilas & JAM González (eds), Educational Technology: Proceedings of the International Conference on ICT's in Education: Proceedings of the International Conference on ICT's in Education. vol. 3, Consejería de Educación, Ciencia y Tecnología, pp. 1426-1430, International Conference on ICT's in Education 2001 , Badajoz, Spain, 06.08.01.

APA

Ehmke, T., & Wünscher, T. (2002). Learning with animations and simulations in a computer-based learning environment about torques. In A. Méndez-Vilas, & J. A. M. González (Eds.), Educational Technology: Proceedings of the International Conference on ICT's in Education: Proceedings of the International Conference on ICT's in Education (Vol. 3, pp. 1426-1430). Consejería de Educación, Ciencia y Tecnología.

Vancouver

Ehmke T, Wünscher T. Learning with animations and simulations in a computer-based learning environment about torques. In Méndez-Vilas A, González JAM, editors, Educational Technology: Proceedings of the International Conference on ICT's in Education: Proceedings of the International Conference on ICT's in Education. Vol. 3. Consejería de Educación, Ciencia y Tecnología. 2002. p. 1426-1430

Bibtex

@inbook{98a6d72ad5744d6fa4a233e4a980b6bd,
title = "Learning with animations and simulations in a computer-based learning environment about torques",
abstract = "Computer-based learning environments offer the possibility to present interactive simulations, which students can manipulate and explore and allow studying functional relations actively. Animations like a short video clip offer - besides interactive simulations - an alternative method for visualizing the dynamic behavior of a complex subject matter. With an animation the problem that students are cognitively overtaxed by the degree of freedom the simulation allows or that they are unable to find suitable hypotheses for experimenting does not exist. One can, therefore, assume that the degree of instructional goal orientation (in the sense of assistance to focus on the learning content) is a conditional variable which determines whether learning is better with animations or with simulations. In an empirical study with four experimental groups knowledge acquisition from animations was compared to knowledge acquisition from simulations. In each group there was additional differentiation between a high and a low level of instructional goal orientation. The learning content was a computer-based learning unit in school physics about torques. There were four versions of the teaching unit. The simulations were realized using dynamic geometry modules, the animations with appropriate video sequences. lt was differentiated between a high and low level of instructional goal orientation by using a different length of information text for every animation or simulation. A total of 52 students from three German schools worked on the computer-based learning unit about torques. In the study, learning with simulations resulted in a significantly higher learning effect, both with a high and with a low instructional goal orientation. These results let us assume that explorative learning with simulations is connected with additional requirements for learning, which (in this study) could not be reduced by a higher level of instructional goal orientation. Interactive simulations offer an instrumental support for the development of mental models, but this does not necessarily lead to a better learning effect. Increased instrumental and cognitive requirements through the learning medium can disturb students' learning. ",
keywords = "Educational science",
author = "Timo Ehmke and Thilo W{\"u}nscher",
year = "2002",
language = "English",
isbn = "8495251760",
volume = "3",
pages = "1426--1430",
editor = "A. M{\'e}ndez-Vilas and Gonz{\'a}lez, {J. A. M. }",
booktitle = "Educational Technology: Proceedings of the International Conference on ICT's in Education",
publisher = "Consejer{\'i}a de Educaci{\'o}n, Ciencia y Tecnolog{\'i}a",
address = "Spain",
note = "International Conference on ICT's in Education 2001 ; Conference date: 06-08-2001 Through 09-08-2001",

}

RIS

TY - CHAP

T1 - Learning with animations and simulations in a computer-based learning environment about torques

AU - Ehmke, Timo

AU - Wünscher, Thilo

PY - 2002

Y1 - 2002

N2 - Computer-based learning environments offer the possibility to present interactive simulations, which students can manipulate and explore and allow studying functional relations actively. Animations like a short video clip offer - besides interactive simulations - an alternative method for visualizing the dynamic behavior of a complex subject matter. With an animation the problem that students are cognitively overtaxed by the degree of freedom the simulation allows or that they are unable to find suitable hypotheses for experimenting does not exist. One can, therefore, assume that the degree of instructional goal orientation (in the sense of assistance to focus on the learning content) is a conditional variable which determines whether learning is better with animations or with simulations. In an empirical study with four experimental groups knowledge acquisition from animations was compared to knowledge acquisition from simulations. In each group there was additional differentiation between a high and a low level of instructional goal orientation. The learning content was a computer-based learning unit in school physics about torques. There were four versions of the teaching unit. The simulations were realized using dynamic geometry modules, the animations with appropriate video sequences. lt was differentiated between a high and low level of instructional goal orientation by using a different length of information text for every animation or simulation. A total of 52 students from three German schools worked on the computer-based learning unit about torques. In the study, learning with simulations resulted in a significantly higher learning effect, both with a high and with a low instructional goal orientation. These results let us assume that explorative learning with simulations is connected with additional requirements for learning, which (in this study) could not be reduced by a higher level of instructional goal orientation. Interactive simulations offer an instrumental support for the development of mental models, but this does not necessarily lead to a better learning effect. Increased instrumental and cognitive requirements through the learning medium can disturb students' learning.

AB - Computer-based learning environments offer the possibility to present interactive simulations, which students can manipulate and explore and allow studying functional relations actively. Animations like a short video clip offer - besides interactive simulations - an alternative method for visualizing the dynamic behavior of a complex subject matter. With an animation the problem that students are cognitively overtaxed by the degree of freedom the simulation allows or that they are unable to find suitable hypotheses for experimenting does not exist. One can, therefore, assume that the degree of instructional goal orientation (in the sense of assistance to focus on the learning content) is a conditional variable which determines whether learning is better with animations or with simulations. In an empirical study with four experimental groups knowledge acquisition from animations was compared to knowledge acquisition from simulations. In each group there was additional differentiation between a high and a low level of instructional goal orientation. The learning content was a computer-based learning unit in school physics about torques. There were four versions of the teaching unit. The simulations were realized using dynamic geometry modules, the animations with appropriate video sequences. lt was differentiated between a high and low level of instructional goal orientation by using a different length of information text for every animation or simulation. A total of 52 students from three German schools worked on the computer-based learning unit about torques. In the study, learning with simulations resulted in a significantly higher learning effect, both with a high and with a low instructional goal orientation. These results let us assume that explorative learning with simulations is connected with additional requirements for learning, which (in this study) could not be reduced by a higher level of instructional goal orientation. Interactive simulations offer an instrumental support for the development of mental models, but this does not necessarily lead to a better learning effect. Increased instrumental and cognitive requirements through the learning medium can disturb students' learning.

KW - Educational science

M3 - Article in conference proceedings

SN - 8495251760

SN - 9788495251763

VL - 3

SP - 1426

EP - 1430

BT - Educational Technology: Proceedings of the International Conference on ICT's in Education

A2 - Méndez-Vilas, A.

A2 - González, J. A. M.

PB - Consejería de Educación, Ciencia y Tecnología

T2 - International Conference on ICT's in Education 2001

Y2 - 6 August 2001 through 9 August 2001

ER -

Recently viewed

Publications

  1. Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images
  2. The scaled boundary finite element method for computational homogenization of heterogeneous media
  3. Different approaches to learning from errors: Comparing the effectiveness of high reliability and error management approaches
  4. Optimizing sampling of flying insects using a modified window trap
  5. Evaluating the construct validity of Objective Personality Tests using a multitrait-multimethod-Multioccasion-(MTMM-MO)-approach
  6. Analyzing different types of moderated method effects in confirmatory factor models for structurally different methods
  7. A Python toolbox for the numerical solution of the Maxey-Riley equation
  8. A Wavelet Packet Tree Denoising Algorithm for Images of Atomic-Force Microscopy
  9. Automatic enumeration of all connected subgraphs.
  10. Methodologies for Noise and Gross Error Detection using Univariate Signal-Based Approaches in Industrial Application
  11. Binary Random Nets I
  12. Using Natural Language Processing Techniques to Tackle the Construct Identity Problem in Information Systems Research
  13. Modeling Effective and Ineffective Knowledge Communication and Learning Discourses in CSCL with Hidden Markov Models
  14. Methodologies for noise and gross error detection using univariate signal-based approaches in industrial applications
  15. Modelling tasks—The relation between linguistic skills, intra-mathematical skills, and context-related prior knowledge
  16. Authenticity and authentication in language learning
  17. Development of a Didactic Graphical Simulation Interface on MATLAB for Systems Control
  18. Knowledge Graph Question Answering Using Graph-Pattern Isomorphism
  19. Graph Conditional Variational Models: Too Complex for Multiagent Trajectories?
  20. Using learning protocols for knowledge acquisition and problem solving with individual and group incentives
  21. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM
  22. Towards a Dynamic Interpretation of Subjective and Objective Values
  23. Analysis of priority rule-based scheduling in dual-resource-constrained shop-floor scenarios
  24. Substructure, subgraph, and walk counts as measures of the complexity of graphs and molecules.
  25. Essentializing the binary self
  26. Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System
  27. Using mixture distribution models to test the construct validity of the Physical Self-Description Questionnaire
  28. Adaptive and Dynamic Feedback Loops between Production System and Production Network based on the Asset Administration Shell
  29. A sufficient asymptotic stability condition in generalised model predictive control to avoid input saturation
  30. Predicting the Difficulty of Exercise Items for Dynamic Difficulty Adaptation in Adaptive Language Tutoring
  31. Evaluation of Time/Phase Parameters in Frequency Measurements for Inertial Navigation Systems
  32. The Scalable Question Answering Over Linked Data (SQA) Challenge 2018
  33. A Lightweight Simulation Model for Soft Robot's Locomotion and its Application to Trajectory Optimization
  34. Optimal regulation for dynamic hybrid systems based on dynamic programming in the case of an intelligent vehicle drive assistant
  35. Expertise in research integration and implementation for tackling complex problems
  36. Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior
  37. Isocodal and isospectral points, edges, and pairs in graphs and how to cope with them in computerized symmetry recognition
  38. Set-oriented numerical computation of rotation sets