Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing. / Chen, Ting; Fu, Banglong; Suhuddin, Uceu F.H.R. et al.
In: Journal of Materials Science and Technology, Vol. 232, 10.10.2025, p. 209-226.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Chen, T., Fu, B., Suhuddin, U. F. H. R., Shen, T., Li, G., Maawad, E., Shen, J., Santos, J. F. D., Bergmann, J. P., & Klusemann, B. (2025). Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing. Journal of Materials Science and Technology, 232, 209-226. Advance online publication. https://doi.org/10.1016/j.jmst.2025.01.026

Vancouver

Chen T, Fu B, Suhuddin UFHR, Shen T, Li G, Maawad E et al. Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing. Journal of Materials Science and Technology. 2025 Oct 10;232:209-226. Epub 2025 Mar 1. doi: 10.1016/j.jmst.2025.01.026

Bibtex

@article{69c4a096a1434e4595efc0d47ae75c97,
title = "Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing",
abstract = "Constrained Friction Processing (CFP), a novel friction-based technique, has been developed to efficiently process fine-grained magnesium (Mg) rods, expanding the potential applications of biodegradable Mg alloys in medical implants. This study investigates the enhancement of mechanical properties through the implementation of multiple pass CFP (MP-CFP) in comparison to the conventional single pass CFP. The results reveal a substantial improvement in compressive yield strength (CYS), ultimate compressive strength, and failure plastic strain by 11%, 28%, and 66%, respectively. A comprehensive analysis of material evolution during processing and the effects of the final microstructure on mechanical properties was conducted. The intricate material flow behavior during the final plunge stage of MP-CFP results in a reduced intensity of local basal texture and macrotexture. The diminished intensity of basal texture, combined with a low geometrical compatibility factor at the top of the rod after MP-CFP, effectively impedes slip transfer across grain boundaries. This leads to a local strain gradient along the compression direction, ultimately contributing to the observed enhancement in mechanical properties. The Mg-0.5Zn-0.3Ca (wt.%) alloy, after texture modification by MP-CFP, exhibits a competitive CYS compared with other traditional methods, highlighting the promising application potential of MP-CFP.",
keywords = "Constrained friction processing, Magnesium alloys, Microstructure, Mechanical properties, Texture, Plastic deformation, Engineering",
author = "Ting Chen and Banglong Fu and Suhuddin, {Uceu F.H.R.} and Tong Shen and Gaohui Li and Emad Maawad and Junjun Shen and Santos, {Jorge F dos} and Bergmann, {Jean Pierre} and Benjamin Klusemann",
note = "Publisher Copyright: {\textcopyright} 2025",
year = "2025",
month = mar,
day = "1",
doi = "10.1016/j.jmst.2025.01.026",
language = "English",
volume = "232",
pages = "209--226",
journal = "Journal of Materials Science and Technology",
issn = "1005-0302",
publisher = "Chinese Society of Metals",

}

RIS

TY - JOUR

T1 - Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing

AU - Chen, Ting

AU - Fu, Banglong

AU - Suhuddin, Uceu F.H.R.

AU - Shen, Tong

AU - Li, Gaohui

AU - Maawad, Emad

AU - Shen, Junjun

AU - Santos, Jorge F dos

AU - Bergmann, Jean Pierre

AU - Klusemann, Benjamin

N1 - Publisher Copyright: © 2025

PY - 2025/3/1

Y1 - 2025/3/1

N2 - Constrained Friction Processing (CFP), a novel friction-based technique, has been developed to efficiently process fine-grained magnesium (Mg) rods, expanding the potential applications of biodegradable Mg alloys in medical implants. This study investigates the enhancement of mechanical properties through the implementation of multiple pass CFP (MP-CFP) in comparison to the conventional single pass CFP. The results reveal a substantial improvement in compressive yield strength (CYS), ultimate compressive strength, and failure plastic strain by 11%, 28%, and 66%, respectively. A comprehensive analysis of material evolution during processing and the effects of the final microstructure on mechanical properties was conducted. The intricate material flow behavior during the final plunge stage of MP-CFP results in a reduced intensity of local basal texture and macrotexture. The diminished intensity of basal texture, combined with a low geometrical compatibility factor at the top of the rod after MP-CFP, effectively impedes slip transfer across grain boundaries. This leads to a local strain gradient along the compression direction, ultimately contributing to the observed enhancement in mechanical properties. The Mg-0.5Zn-0.3Ca (wt.%) alloy, after texture modification by MP-CFP, exhibits a competitive CYS compared with other traditional methods, highlighting the promising application potential of MP-CFP.

AB - Constrained Friction Processing (CFP), a novel friction-based technique, has been developed to efficiently process fine-grained magnesium (Mg) rods, expanding the potential applications of biodegradable Mg alloys in medical implants. This study investigates the enhancement of mechanical properties through the implementation of multiple pass CFP (MP-CFP) in comparison to the conventional single pass CFP. The results reveal a substantial improvement in compressive yield strength (CYS), ultimate compressive strength, and failure plastic strain by 11%, 28%, and 66%, respectively. A comprehensive analysis of material evolution during processing and the effects of the final microstructure on mechanical properties was conducted. The intricate material flow behavior during the final plunge stage of MP-CFP results in a reduced intensity of local basal texture and macrotexture. The diminished intensity of basal texture, combined with a low geometrical compatibility factor at the top of the rod after MP-CFP, effectively impedes slip transfer across grain boundaries. This leads to a local strain gradient along the compression direction, ultimately contributing to the observed enhancement in mechanical properties. The Mg-0.5Zn-0.3Ca (wt.%) alloy, after texture modification by MP-CFP, exhibits a competitive CYS compared with other traditional methods, highlighting the promising application potential of MP-CFP.

KW - Constrained friction processing

KW - Magnesium alloys

KW - Microstructure

KW - Mechanical properties

KW - Texture

KW - Plastic deformation

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=105000485082&partnerID=8YFLogxK

U2 - 10.1016/j.jmst.2025.01.026

DO - 10.1016/j.jmst.2025.01.026

M3 - Journal articles

VL - 232

SP - 209

EP - 226

JO - Journal of Materials Science and Technology

JF - Journal of Materials Science and Technology

SN - 1005-0302

ER -

Recently viewed

Publications

  1. ACL–adaptive correction of learning parameters for backpropagation based algorithms
  2. Neural Network-Based Finite-Time Control for Stochastic Nonlinear Systems with Input Dead-Zone and Saturation
  3. Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
  4. Discourse Analyses in Chat-based CSCL with Learning Protocols
  5. An MPC for an Aggregate Actuator with a Self-Tuning Feedforward Control
  6. Preventive Emergency Detection Based on the Probabilistic Evaluation of Distributed, Embedded Sensor Networks
  7. Throttle valve control using an inverse local linear model tree based on a Fuzzy neural network
  8. Learning with animations and simulations in a computer-based learning environment about torques
  9. Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity
  10. Using mixture distribution models to test the construct validity of the Physical Self-Description Questionnaire
  11. Set-oriented numerical computation of rotation sets
  12. Trajectory-based computational study of coherent behavior in flows
  13. Digital Control of a Camless Engine Using Lyapunov Approach with Backward Euler Approximation
  14. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation
  15. Joint entity and relation linking using EARL
  16. Human–learning–machines: introduction to a special section on how cybernetics and constructivism inspired new forms of learning
  17. Supporting discourse in a synchronous learning environment
  18. Cross-document coreference resolution using latent features
  19. Performance analysis for loss systems with many subscribers and concurrent services
  20. On finding nonisomorphic connected subgraphs and distinct molecular substructures.
  21. Improved sensorimotor control is not connected with improved proprioception
  22. Expertise in research integration and implementation for tackling complex problems
  23. Changes in the Complexity of Limb Movements during the First Year of Life across Different Tasks
  24. Analysis of semi-open queueing networks using lost customers approximation with an application to robotic mobile fulfilment systems
  25. A decoupled MPC using a geometric approach and feedforward action for motion control in robotino
  26. Model predictive control for switching gain adaptation in a sliding mode controller of a DC drive with nonlinear friction
  27. Finding Creativity in Predictability: Seizing Kairos in Chronos Through Temporal Work in Complex Innovation Processes
  28. An application of multiple behavior SIA for analyzing data from student exams
  29. Continuous and Discrete Concepts for Detecting Transport Barriers in the Planar Circular Restricted Three Body Problem
  30. Control of an Electromagnetic Linear Actuator Using Flatness Property and Systems Inversion
  31. Machine Learning and Knowledge Discovery in Databases
  32. Design of controllers applied to autonomous unmanned aerial vehicles using software in the loop
  33. A Wavelet Packet Algorithm for Online Detection of Pantograph Vibrations