Degraded creep resistance induced by static precipitation strengthening in high-pressure die casting Mg-Al-Sm alloy

Research output: Journal contributionsJournal articlesResearch


  • Qiang Yang
  • S.H. Lv
  • B. Deng
  • Norbert Hort
  • Y.D. Huang
  • Wei Sun
  • Xin Qiu

Relationship between precipitation strengthening and creep resistance improvement has been an important topic for the widespread applications of magnesium alloys. Generally, static precipitation strengthening through thermal stable precipitates would generate satisfactory creep resistance. However, an opposite example is presented in this work and we propose that the size of precipitates plays a crucial role in controlling the operative creep mechanisms. In addition, the precipitate components along with their crystal structures in the crept Mg–4Al–3Sm–0.4Mn samples with/without pre-aging were thoroughly studied using Cs aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Previous aging generates a large density of fine precipitates (< ∼5 nm) homogeneously distributing in Mg matrix and exhibiting satisfactory strengthening effect. However, the number density of precipitate strings consisting of several or even dozens of relatively coarse precipitates (∼10 nm) was significantly decreased at the same time. As revealed in this work, the relatively coarse particles in Mg matrix are much more efficient than the fine precipitates in promoting dislocation climb. Therefore, the rate-controlling mechanisms are transferred from dislocation climb to dislocation slip after previous aging, thus leading to degradation of creep resistance. Moreover, there are mainly five types of precipitates/clusters, namely β´´-(Al, Mg) 3Sm, Al 5Sm 3, ordered Al–Sm cluster, ordered Al–Mn cluster and ordered/unordered AlMnSm clusters. The crystal structures of the former two precipitates were discussed and the formation mechanisms of the precipitates/clusters were revealed.

Original languageEnglish
JournalJournal of Materials Science and Technology
Pages (from-to)48-58
Number of pages11
Publication statusE-pub ahead of print - 22.09.2023

Bibliographical note

Funding Information:
This work is financially supported by the Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2023234 ), the Scientific and Technological Developing Scheme of Jilin Province (No. 20220402012GH ), the National Natural Science Foundation of China (No. U21A20323 ), the Capital Construction Fund within the Budget of Jilin Province (No. 2023C044-2 ), and the Major science and technology projects of Jilin Province and Changchun City (No. 20220301026GX ), the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences (No. 2023SYHZ0036 ).

Publisher Copyright:
© 2023

    Research areas

  • Magnesium alloy, Transmission electron microscopy, Precipitation, Creep resistance, Segregation
  • Engineering