Open-flow mixing and transfer operators
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
We study finite-time mixing in time-periodic open flow systems. We describe the transport of densities in terms of a transfer operator, which is represented by the transition matrix of a finite-state Markov chain. The transport processes in the open system are organized by the chaotic saddle and its stable and unstable manifolds. We extract these structures directly from leading eigenvectors of the transition matrix. We use different measures to quantify the degree of mixing and show that they give consistent results in parameter studies of two model systems. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 20210028 |
Zeitschrift | Philosophical transactions. Series A, Mathematical, physical, and engineering sciences |
Jahrgang | 380 |
Ausgabenummer | 2225 |
Anzahl der Seiten | 22 |
ISSN | 1364-503X |
DOIs | |
Publikationsstatus | Erschienen - 13.06.2022 |
Bibliographische Notiz
Funding Information:
This research has been supported by the Deutsche Forschungsgemeinschaft within the Priority Programme DFG-SPP 1881 on Turbulent Superstructures. A.K. and K.P.-G. thank Sanjeeva Balasuriya for fruitful discussions.
Publisher Copyright:
© 2022 The Author(s).
- Mathematik
Fachgebiete
Zugehörige Projekte
Lagrangesche Aspekte turbulenter Superstrukturen: numerische Analyse der Langzeitdynamik und Transporteigenschaften
Projekt: Forschung