A Python toolbox for the numerical solution of the Maxey-Riley equation
Publikation: Beiträge in Zeitschriften › Konferenzaufsätze in Fachzeitschriften › Forschung › begutachtet
Authors
The Maxey-Riley equation (MRE) models the motion of a finite-sized, spherical particle in a fluid. It is a second-order integro-differential equation with a kernel with a singularity at initial time. Because solving the integral term is numerically challenging, it is often neglected despite its often non-negligible impact. Recently, Prasath et al. showed that the MRE can be rewritten as a time-dependent heat equation on a semi-infinite domain with a nonlinear, Robin-type boundary condition. This approach avoids the need to deal with the integral term. They also describe a numerical approach for solving the transformed MRE based on Fokas method. We provide a Python toolbox implementing their approach, verify it against some of their numerical examples and demonstrate its flexibility by computing the trajectory of a particle in a velocity field given by experimental data.
Originalsprache | Englisch |
---|---|
Aufsatznummer | e202200242 |
Zeitschrift | Proceedings in applied mathematics and mechanics |
Jahrgang | 22 |
Ausgabenummer | 1 |
Anzahl der Seiten | 6 |
ISSN | 1617-7061 |
DOIs | |
Publikationsstatus | Erschienen - 01.03.2023 |
Veranstaltung | 92. Jahrestagung der Gesellschaft für angewandte Mathematik und Mechanik - RWTH Aachen Universität, Aachen, Deutschland Dauer: 15.08.2022 → 19.08.2022 Konferenznummer: 92 https://jahrestagung.gamm-ev.de/annual-meeting-2022/annual-meeting/ |
- Mathematik