How alloying and processing effects can influence the microstructure and mechanical properties of directly extruded thin zinc wires

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

How alloying and processing effects can influence the microstructure and mechanical properties of directly extruded thin zinc wires. / Nienaber, Maria; Bramkamp, Sophie; Ben Khalifa, Noomane et al.
in: Materials Science and Engineering: A, Jahrgang 905, 146720, 07.2024.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{e1a61ab7070e4d2d9612d4e2fae70b43,
title = "How alloying and processing effects can influence the microstructure and mechanical properties of directly extruded thin zinc wires",
abstract = "Zinc (Zn) in particular has gained attention as biodegradable metal due to its advantageous corrosion rates compared to magnesium (Mg) or iron (Fe). Still, strength and ductility of zinc are found to be unfavorable for many medical applications. Strategies to overcome such issues base on a distinct grain refinement of the respective product. One important condition of the metal is assumed to be in the form of wires, which in the present work stem from a direct extrusion setup and high degrees of deformation, therefore a hot forming procedure as the underlying thermomechanical treatment. A basic binary alloying approach with Mg, manganese (Mn) and copper (Cu) is applied, limiting the content to a solid solution range of the alloys. The processability and the processing ranges are examined as well as their impact on the microstructure development and the resulting mechanical behavior. Higher extrusion speed leads to inhomogeneous material flow during extrusion. Alloying Zn can reduce the influence of process parameters and decrease the average grain sizes of wires which experienced lower temperature impact. The forming ability of pure Zn and ZnMg-alloy remain limited whereas they appear more beneficial for the alloys with Mn and especially Cu.",
keywords = "Electron backscatter diffraction (EBSD), Extrusion, Mechanical properties, Microstructure, Wire, Zinc alloys, Engineering",
author = "Maria Nienaber and Sophie Bramkamp and {Ben Khalifa}, Noomane and Jan Bohlen",
note = "Publisher Copyright: {\textcopyright} 2024 The Authors",
year = "2024",
month = jul,
doi = "10.1016/j.msea.2024.146720",
language = "English",
volume = "905",
journal = "Materials Science and Engineering: A",
issn = "0921-5093",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - How alloying and processing effects can influence the microstructure and mechanical properties of directly extruded thin zinc wires

AU - Nienaber, Maria

AU - Bramkamp, Sophie

AU - Ben Khalifa, Noomane

AU - Bohlen, Jan

N1 - Publisher Copyright: © 2024 The Authors

PY - 2024/7

Y1 - 2024/7

N2 - Zinc (Zn) in particular has gained attention as biodegradable metal due to its advantageous corrosion rates compared to magnesium (Mg) or iron (Fe). Still, strength and ductility of zinc are found to be unfavorable for many medical applications. Strategies to overcome such issues base on a distinct grain refinement of the respective product. One important condition of the metal is assumed to be in the form of wires, which in the present work stem from a direct extrusion setup and high degrees of deformation, therefore a hot forming procedure as the underlying thermomechanical treatment. A basic binary alloying approach with Mg, manganese (Mn) and copper (Cu) is applied, limiting the content to a solid solution range of the alloys. The processability and the processing ranges are examined as well as their impact on the microstructure development and the resulting mechanical behavior. Higher extrusion speed leads to inhomogeneous material flow during extrusion. Alloying Zn can reduce the influence of process parameters and decrease the average grain sizes of wires which experienced lower temperature impact. The forming ability of pure Zn and ZnMg-alloy remain limited whereas they appear more beneficial for the alloys with Mn and especially Cu.

AB - Zinc (Zn) in particular has gained attention as biodegradable metal due to its advantageous corrosion rates compared to magnesium (Mg) or iron (Fe). Still, strength and ductility of zinc are found to be unfavorable for many medical applications. Strategies to overcome such issues base on a distinct grain refinement of the respective product. One important condition of the metal is assumed to be in the form of wires, which in the present work stem from a direct extrusion setup and high degrees of deformation, therefore a hot forming procedure as the underlying thermomechanical treatment. A basic binary alloying approach with Mg, manganese (Mn) and copper (Cu) is applied, limiting the content to a solid solution range of the alloys. The processability and the processing ranges are examined as well as their impact on the microstructure development and the resulting mechanical behavior. Higher extrusion speed leads to inhomogeneous material flow during extrusion. Alloying Zn can reduce the influence of process parameters and decrease the average grain sizes of wires which experienced lower temperature impact. The forming ability of pure Zn and ZnMg-alloy remain limited whereas they appear more beneficial for the alloys with Mn and especially Cu.

KW - Electron backscatter diffraction (EBSD)

KW - Extrusion

KW - Mechanical properties

KW - Microstructure

KW - Wire

KW - Zinc alloys

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85194101993&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/819eb53d-22f0-35ee-a25b-ffacd59e1890/

U2 - 10.1016/j.msea.2024.146720

DO - 10.1016/j.msea.2024.146720

M3 - Journal articles

AN - SCOPUS:85194101993

VL - 905

JO - Materials Science and Engineering: A

JF - Materials Science and Engineering: A

SN - 0921-5093

M1 - 146720

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Detecting Various Road Damage Types in Global Countries Utilizing Faster R-CNN
  2. IWRM through WFD implementation? Drivers for integration in polycentric water governance systems
  3. Utilizing learning analytics to support study success
  4. Towards a Service-Oriented Architecture for Production Planning and Control
  5. Performance of process-based models for simulation of grain N in crop rotations across Europe
  6. When it really counts
  7. Warming-up effects of static stretching on power and strength
  8. Robust approximate fixed-time tracking control for uncertain robot manipulators
  9. In situ synchrotron radiation diffraction investigation of the compression behaviour at 350 °C of ZK40 alloys with addition of CaO and Y
  10. Modelling, explaining, enacting and getting feedback: How can the acquisition of core practices in teacher education be optimally fostered?
  11. Changes in processing characteristics and microstructural evolution during friction extrusion of aluminum
  12. Deciphering movement and stasis
  13. Rethink Textile Production - Developing sustainable concepts for textile industry using production simulation
  14. Concepts
  15. Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions
  16. What factors enable social-ecological transformative potential? The role of learning practices, empowerment, and networking
  17. Assessing Quality of Teaching from Different Perspectives
  18. U-model-based dynamic inversion control for quadrotor UAV systems
  19. Effectiveness of Web- and Mobile-Based Treatment of Subthreshold Depression With Adherence-Focused Guidance