Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013)

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013). / Geiser, Christian; Koch, Tobias; Eid, Michael.
in: Structural Equation Modeling: A Multidisciplinary Journal, Jahrgang 21, Nr. 4, 02.10.2014, S. 509-523.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{181febb02ff6473c80180a983f7ec16c,
title = "Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:: A Comment on Castro-Schilo, Widaman, and Grimm (2013)",
abstract = "In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.",
keywords = "Sociology, constructively defined latent variables, CT-CM model, CT-C(M-1) model",
author = "Christian Geiser and Tobias Koch and Michael Eid",
year = "2014",
month = oct,
day = "2",
doi = "10.1080/10705511.2014.919816",
language = "English",
volume = "21",
pages = "509--523",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1532-8007",
publisher = "Psychology Press Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:

T2 - A Comment on Castro-Schilo, Widaman, and Grimm (2013)

AU - Geiser, Christian

AU - Koch, Tobias

AU - Eid, Michael

PY - 2014/10/2

Y1 - 2014/10/2

N2 - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

AB - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

KW - Sociology

KW - constructively defined latent variables

KW - CT-CM model

KW - CT-C(M-1) model

UR - http://www.scopus.com/inward/record.url?scp=84927564218&partnerID=8YFLogxK

U2 - 10.1080/10705511.2014.919816

DO - 10.1080/10705511.2014.919816

M3 - Journal articles

C2 - 25419098

VL - 21

SP - 509

EP - 523

JO - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1532-8007

IS - 4

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. CTRL + F_eminist futures: Hacking algorithmic architectures of cities to come
  2. Trajectory-based Lagrangian approaches for the extraction and characterization of coherent structures in turbulent convection
  3. 4th Keep it Simple Make it Fast! - KISMIF 2018
  4. Einführung in das Asylrecht
  5. Analysing video-taped interactions in fantasy role-playing games
  6. SoepCampus - 2010
  7. Scientists for Future Workshop - 2020
  8. Language Learning in Digital Projects - The Going Green Project
  9. On Race & Ecocide: Thinking of New Forms of Environmentality and Eco-Colonialism
  10. Explaining the performance of participatory and collaborative governance in addressing long-term environmental policy issues
  11. Potentiale entdecken - Qualität sichern!
  12. Digital Transformation and Digital Business
  13. Future as a Result of Evolution and Planning
  14. IdeenExpo 2011
  15. Green IT & IT-for-Green - 2010
  16. Die Dokumentarische Methode
  17. The concept of a sustainable use of biocidal active substances – applied to rodenticides
  18. Association for Information Systems (AIS) (Externe Organisation)
  19. Gerechtigkeit und Transformation. Eine Tagung in Tutzing
  20. UV photodegradation of trimipramine under different environmental variables and chemical nature of aqueous solution - biodegradation and LC-MSn characterization of the formed transformation products
  21. College (Organisation)
  22. Ecological restoration as a tool out of multiple crisis - examples from grassland restoration
  23. Teachers‘ Approaches and Attitudes towards Academic Language Support: Differences in Natural and Social Science Classrooms
  24. Imaginaries of Disconnection
  25. European Conference on Information Systems 2023 (Veranstaltung)