Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013)

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013). / Geiser, Christian; Koch, Tobias; Eid, Michael.
in: Structural Equation Modeling: A Multidisciplinary Journal, Jahrgang 21, Nr. 4, 02.10.2014, S. 509-523.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{181febb02ff6473c80180a983f7ec16c,
title = "Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:: A Comment on Castro-Schilo, Widaman, and Grimm (2013)",
abstract = "In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.",
keywords = "Sociology, constructively defined latent variables, CT-CM model, CT-C(M-1) model",
author = "Christian Geiser and Tobias Koch and Michael Eid",
year = "2014",
month = oct,
day = "2",
doi = "10.1080/10705511.2014.919816",
language = "English",
volume = "21",
pages = "509--523",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1532-8007",
publisher = "Psychology Press Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:

T2 - A Comment on Castro-Schilo, Widaman, and Grimm (2013)

AU - Geiser, Christian

AU - Koch, Tobias

AU - Eid, Michael

PY - 2014/10/2

Y1 - 2014/10/2

N2 - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

AB - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

KW - Sociology

KW - constructively defined latent variables

KW - CT-CM model

KW - CT-C(M-1) model

UR - http://www.scopus.com/inward/record.url?scp=84927564218&partnerID=8YFLogxK

U2 - 10.1080/10705511.2014.919816

DO - 10.1080/10705511.2014.919816

M3 - Journal articles

C2 - 25419098

VL - 21

SP - 509

EP - 523

JO - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1532-8007

IS - 4

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Comparing the performance of computational estimation methods for physicochemical properties of dimethylsiloxanes and selected siloxanols
  2. A tutorial introduction to adaptive fractal analysis
  3. Mathematics in Robot Control for Theoretical and Applied Problems
  4. Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
  5. Challenges in detecting proximal effects of existential threat on lie detection accuracy
  6. Machine Learning and Knowledge Discovery in Databases
  7. Soft Optimal Computing Methods to Identify Surface Roughness in Manufacturing Using a Monotonic Regressor
  8. A sensor fault detection scheme as a functional safety feature for DC-DC converters
  9. Long-term memory predictors of adult language learning at the interface between syntactic form and meaning
  10. Visualization of the Plasma Frequency by means of a Particle Simulation using a Normalized Periodic Model
  11. Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests
  12. Simple saturated relay non-linear PD control for uncertain motion systems with friction and actuator constraint
  13. Nonlinear PD fault-tolerant control for dynamic positioning of ships with actuator constraints
  14. On the origin of passive rotation in rotational joints, and how to calculate it
  15. Kalman Filter for Predictive Maintenance and Anomaly Detection
  16. A Switching Cascade Sliding PID-PID Controllers Combined with a Feedforward and an MPC for an Actuator in Camless Internal Combustion Engines
  17. Dynamic Lot Size Optimization with Reinforcement Learning
  18. Comparison of different FEM codes approach for extrusion process analysis
  19. Robust decoupling through algebraic output feedback in manipulation systems