Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013)

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013). / Geiser, Christian; Koch, Tobias; Eid, Michael.
in: Structural Equation Modeling: A Multidisciplinary Journal, Jahrgang 21, Nr. 4, 02.10.2014, S. 509-523.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{181febb02ff6473c80180a983f7ec16c,
title = "Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:: A Comment on Castro-Schilo, Widaman, and Grimm (2013)",
abstract = "In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.",
keywords = "Sociology, constructively defined latent variables, CT-CM model, CT-C(M-1) model",
author = "Christian Geiser and Tobias Koch and Michael Eid",
year = "2014",
month = oct,
day = "2",
doi = "10.1080/10705511.2014.919816",
language = "English",
volume = "21",
pages = "509--523",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1532-8007",
publisher = "Psychology Press Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:

T2 - A Comment on Castro-Schilo, Widaman, and Grimm (2013)

AU - Geiser, Christian

AU - Koch, Tobias

AU - Eid, Michael

PY - 2014/10/2

Y1 - 2014/10/2

N2 - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

AB - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

KW - Sociology

KW - constructively defined latent variables

KW - CT-CM model

KW - CT-C(M-1) model

UR - http://www.scopus.com/inward/record.url?scp=84927564218&partnerID=8YFLogxK

U2 - 10.1080/10705511.2014.919816

DO - 10.1080/10705511.2014.919816

M3 - Journal articles

C2 - 25419098

VL - 21

SP - 509

EP - 523

JO - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1532-8007

IS - 4

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Student Behavior in Error-Correction-Tasks and its Relation to Perception of Competence
  2. Moving Towards Measuring Multifunctionality in Ecosystems: FieldScreen – A Mobile Positioning System for Non-Invasive Measurement of Plant Traits in Field Experiments
  3. GERBIL - General entity annotator benchmarking framework
  4. Understanding the socio-technical aspects of low-code adoption for software development
  5. Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain
  6. Perception and Inference
  7. Mapping industrial patterns in spatial agglomeration
  8. Activity–rest schedules in physically demanding work and the variation of responses with age
  9. Determination of 10 particle-associated multiclass polar and semi-polar pesticides from small streams using accelerated solvent extraction
  10. Prothesen, Aufschreibesysteme, Cyborgs
  11. Development of coordination in time estimation
  12. Geometric series with randomly increasing exponents
  13. A comparison between private and public access rules to bottlenecks - experiences and expectations from telecommunication and energy
  14. Diffusion of the Balanced Scorecard
  15. Green software engineering with agile methods
  16. Open-flow mixing and transfer operators
  17. A Kalman estimator for detecting repetitive disturbances
  18. Determinants of mandatory goodwill disclosure
  19. Combining sense of place theory with the ecosystem services concept: empirical insights and reflections from a participatory mapping study
  20. More than a YouTube Channel
  21. Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions
  22. Generalizing Trust
  23. Managing Global Production Networks
  24. Explorations in Social Spaces
  25. How attribution-of-competence and scale-granularity explain the anchor precision effect in negotiations and estimations.
  26. Building collective institutional infrastructures for decent platform work: The development of a crowdwork agreement in Germany
  27. In situ synchrotron radiation diffraction study of the role of Gd, Nd on the elevated temperature compression behavior of ZK40
  28. Towards a global understanding of tree mortality
  29. Utopian Hacks
  30. Improving the cost-effectiveness of a healthcare system for depressive disorders by implementing telemedicine
  31. "Glaubt ihr nicht, so bleibt ihr nicht"
  32. Improving the surface quality of AlMgSi1 alloy with the selection of the appropriate vibration grinding stones
  33. Wirtschaften in Netzen
  34. You Are Where You Eat: A Theoretical Perspective on Why Identity Matters in Local Food Groups
  35. A review on the use of calcium chloride in applied thermal engineering
  36. Learning in participatory environmental governance – its antecedents and effects. Findings from a case survey meta-analysis
  37. Placing Brazil's grasslands and savannas on the map of science and conservation