Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013)

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013). / Geiser, Christian; Koch, Tobias; Eid, Michael.
in: Structural Equation Modeling: A Multidisciplinary Journal, Jahrgang 21, Nr. 4, 02.10.2014, S. 509-523.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{181febb02ff6473c80180a983f7ec16c,
title = "Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:: A Comment on Castro-Schilo, Widaman, and Grimm (2013)",
abstract = "In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.",
keywords = "Sociology, constructively defined latent variables, CT-CM model, CT-C(M-1) model",
author = "Christian Geiser and Tobias Koch and Michael Eid",
year = "2014",
month = oct,
day = "2",
doi = "10.1080/10705511.2014.919816",
language = "English",
volume = "21",
pages = "509--523",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1532-8007",
publisher = "Psychology Press Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:

T2 - A Comment on Castro-Schilo, Widaman, and Grimm (2013)

AU - Geiser, Christian

AU - Koch, Tobias

AU - Eid, Michael

PY - 2014/10/2

Y1 - 2014/10/2

N2 - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

AB - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

KW - Sociology

KW - constructively defined latent variables

KW - CT-CM model

KW - CT-C(M-1) model

UR - http://www.scopus.com/inward/record.url?scp=84927564218&partnerID=8YFLogxK

U2 - 10.1080/10705511.2014.919816

DO - 10.1080/10705511.2014.919816

M3 - Journal articles

C2 - 25419098

VL - 21

SP - 509

EP - 523

JO - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1532-8007

IS - 4

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Gain Adaptation in Sliding Mode Control Using Model Predictive Control and Disturbance Compensation with Application to Actuators
  2. Saving (in) a common world
  3. Introduction: The representative turn in EU studies
  4. Highly Efficient IPT Transmitter Circuit Based on a Novel Enhanced Class B Amplifier for Consumer Applications
  5. Retest effects in matrix test performance
  6. How does telework modify informal workplace learning and how can supervisors provide support?
  7. The representative turn in EU studies
  8. Quality System Development at the University of Graz
  9. Reporting and Analysing the Environmental Impact of Language Models on the Example of Commonsense Question Answering with External Knowledge
  10. From teacher-centered instruction to peer tutoring in the heterogeneous international classroom
  11. Agile Portfolio Management Patterns
  12. Predicting the Individual Mood Level based on Diary Data
  13. Bed-Sharing in Couples Is Associated With Increased and Stabilized REM Sleep and Sleep-Stage Synchronization
  14. Influence of Long-Lasting Static Stretching Intervention on Functional and Morphological Parameters in the Plantar Flexors
  15. Lessons learned and challenges for environmental management in Colombia
  16. Frame-based Optimal Design
  17. Detection of significant tracer gases by means of polymer gas sensors
  18. Integrating teacher and student workspaces in a technology-enhanced mathematics lecture
  19. An Experimental Approach to the Optimization of Customer Information at the Point of Sale
  20. Performance Saga: Interview 01
  21. Erroneous examples as desirable difficulty
  22. Object-Oriented Construction Handbook
  23. Education and Communication as Prerequisites for and Components of Sustainable Development. Reflections for Policies, Conceptual Work, and Theory, Based on Previous Practises