Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013)

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013). / Geiser, Christian; Koch, Tobias; Eid, Michael.
In: Structural Equation Modeling: A Multidisciplinary Journal, Vol. 21, No. 4, 02.10.2014, p. 509-523.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{181febb02ff6473c80180a983f7ec16c,
title = "Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:: A Comment on Castro-Schilo, Widaman, and Grimm (2013)",
abstract = "In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.",
keywords = "Sociology, constructively defined latent variables, CT-CM model, CT-C(M-1) model",
author = "Christian Geiser and Tobias Koch and Michael Eid",
year = "2014",
month = oct,
day = "2",
doi = "10.1080/10705511.2014.919816",
language = "English",
volume = "21",
pages = "509--523",
journal = "Structural Equation Modeling: A Multidisciplinary Journal",
issn = "1532-8007",
publisher = "Psychology Press Ltd",
number = "4",

}

RIS

TY - JOUR

T1 - Data-Generating Mechanisms Versus Constructively Defined Latent Variables in Multitrait–Multimethod Analysis:

T2 - A Comment on Castro-Schilo, Widaman, and Grimm (2013)

AU - Geiser, Christian

AU - Koch, Tobias

AU - Eid, Michael

PY - 2014/10/2

Y1 - 2014/10/2

N2 - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

AB - In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait–multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the correlated traits–correlated uniqueness (CT-CU) or correlated traits–correlated (methods–1) [CT-C(M–1)] models were fit to data generated from the correlated traits–correlated methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M–1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M–1) model. We show that the CT-C(M–1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use confirmatory factor analysis MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

KW - Sociology

KW - constructively defined latent variables

KW - CT-CM model

KW - CT-C(M-1) model

UR - http://www.scopus.com/inward/record.url?scp=84927564218&partnerID=8YFLogxK

U2 - 10.1080/10705511.2014.919816

DO - 10.1080/10705511.2014.919816

M3 - Journal articles

C2 - 25419098

VL - 21

SP - 509

EP - 523

JO - Structural Equation Modeling: A Multidisciplinary Journal

JF - Structural Equation Modeling: A Multidisciplinary Journal

SN - 1532-8007

IS - 4

ER -

Recently viewed

Publications

  1. Design and characterization of an EOG signal acquisition system based on the programming of saccadic movement routines
  2. Diffusion-driven microstructure evolution in OpenCalphad
  3. Introducing parametric uncertainty into a nonlinear friction model
  4. Patching Together a Global Script
  5. An extended analytical approach to evaluating monotonic functions of fuzzy numbers
  6. On the Decoupling and Output Functional Controllability of Robotic Manipulation
  7. Optimization Analysis for an Uncovered Wagon Transportation with an Interactive Animated Simulation-Based Platform for Multidisciplinary Learning
  8. How Much Tracking Is Necessary? - The Learning Curve in Bayesian User Journey Analysis
  9. ActiveMath - a Learning Platform With Semantic Web Features
  10. Text Comprehension as a Mediator in Solving Mathematical Reality-Based Tasks
  11. Modelling and implementation of an Order2Cash Process in distributed systems
  12. FFTSMC with Optimal Reference Trajectory Generated by MPC in Robust Robotino Motion Planning with Saturating Inputs
  13. On the Nonlinearity Compensation in Permanent Magnet Machine Using a Controller Based on a Controlled Invariant Subspace
  14. Fixed-term Contracts and Wages Revisited Using Linked Employer-Employee Data from Germany
  15. A Gait Pattern Generator for Closed-Loop Position Control of a Soft Walking Robot
  16. The elicitation process in developing of case library for Case-Based Reasoner system whilst consideration for validating electronic communication technologies
  17. Export Intensity and Plant Characteristics: What can we learn from Quantile Regression?
  18. Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing
  19. Don’t underestimate the problems of user centredness in software development projectsthere are many!?
  20. Control versus Complexity
  21. Children's use of spatial skills in solving two map-reading tasks in real space.
  22. Selecting and Adapting Methods for Analysis and Design in Value-Sensitive Digital Social Innovation Projects: Toward Design Principles
  23. Template-based Question Answering using Recursive Neural Networks
  24. NH4+ ad-/desorption in sequencing batch reactors
  25. Reality-Based Tasks with Complex-Situations
  26. Automated Invoice Processing: Machine Learning-Based Information Extraction for Long Tail Suppliers
  27. Using corpus-linguistic methods to track longitudinal development
  28. Toward Application and Implementation of in Silico Tools and Workflows within Benign by Design Approaches