Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion. / Bano, Kalsoom; Abbas, Ghulam; Hatatah, Mohammed et al.
In: Mathematics, Vol. 12, No. 5, 656, 03.2024.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bano K, Abbas G, Hatatah M, Touti E, Emara A, Mercorelli P. Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion. Mathematics. 2024 Mar;12(5):656. doi: 10.3390/math12050656

Bibtex

@article{d2599655b7944d48b27b192b9bc280cc,
title = "Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion",
abstract = "Multi-level inverters are widely employed to generate new energy because of their huge capacity and benefits in sound control performance. One of the critical areas of study for multi-level inverters is control strategy research. In this study, the control strategy for a multi-level inverter—which is frequently employed in HVDC and FACTS systems—is designed. An asymmetrical D.C. voltage source is supplied to create the appropriate output voltage waveform with fewer total harmonic distortions (THDs) at the output voltage and current waveforms. In this work, the pulse width modulation techniques of POD (phase opposition disposition) and APOD (alternative phase opposition disposition) MC PWM are applied to a multi-level inverter to generate the seven-level output voltage waveform. This study presents an enhanced variable carrier frequency APOD control approach that can successfully lower the overall harmonic distortion rate. The design and completion of the phase-shifting POD and APOD control strategies are followed by an analysis and comparison of the THD situation under various switching frequencies and a simulation and verification of the control strategy using MATLAB simulation. The TI DSP-based control approach has been programmed. The APOD technique increases the output voltage{\textquoteright}s THD to 18.27%, while the output current waveform{\textquoteright}s THD is reduced to 15.67% by utilizing the APOD PWM technique. Using the POD PWM approach increases the total harmonic distortion (THD) of the voltage waveform by 18.06% and the output current waveform{\textquoteright}s THD by 15.45%.",
keywords = "DSP control, level-shifted APOD, level-shifted POD, THD, Engineering",
author = "Kalsoom Bano and Ghulam Abbas and Mohammed Hatatah and Ezzeddine Touti and Ahmed Emara and Paolo Mercorelli",
note = "Publisher Copyright: {\textcopyright} 2024 by the authors.",
year = "2024",
month = mar,
doi = "10.3390/math12050656",
language = "English",
volume = "12",
journal = "Mathematics",
issn = "2227-7390",
publisher = "MDPI AG",
number = "5",

}

RIS

TY - JOUR

T1 - Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion

AU - Bano, Kalsoom

AU - Abbas, Ghulam

AU - Hatatah, Mohammed

AU - Touti, Ezzeddine

AU - Emara, Ahmed

AU - Mercorelli, Paolo

N1 - Publisher Copyright: © 2024 by the authors.

PY - 2024/3

Y1 - 2024/3

N2 - Multi-level inverters are widely employed to generate new energy because of their huge capacity and benefits in sound control performance. One of the critical areas of study for multi-level inverters is control strategy research. In this study, the control strategy for a multi-level inverter—which is frequently employed in HVDC and FACTS systems—is designed. An asymmetrical D.C. voltage source is supplied to create the appropriate output voltage waveform with fewer total harmonic distortions (THDs) at the output voltage and current waveforms. In this work, the pulse width modulation techniques of POD (phase opposition disposition) and APOD (alternative phase opposition disposition) MC PWM are applied to a multi-level inverter to generate the seven-level output voltage waveform. This study presents an enhanced variable carrier frequency APOD control approach that can successfully lower the overall harmonic distortion rate. The design and completion of the phase-shifting POD and APOD control strategies are followed by an analysis and comparison of the THD situation under various switching frequencies and a simulation and verification of the control strategy using MATLAB simulation. The TI DSP-based control approach has been programmed. The APOD technique increases the output voltage’s THD to 18.27%, while the output current waveform’s THD is reduced to 15.67% by utilizing the APOD PWM technique. Using the POD PWM approach increases the total harmonic distortion (THD) of the voltage waveform by 18.06% and the output current waveform’s THD by 15.45%.

AB - Multi-level inverters are widely employed to generate new energy because of their huge capacity and benefits in sound control performance. One of the critical areas of study for multi-level inverters is control strategy research. In this study, the control strategy for a multi-level inverter—which is frequently employed in HVDC and FACTS systems—is designed. An asymmetrical D.C. voltage source is supplied to create the appropriate output voltage waveform with fewer total harmonic distortions (THDs) at the output voltage and current waveforms. In this work, the pulse width modulation techniques of POD (phase opposition disposition) and APOD (alternative phase opposition disposition) MC PWM are applied to a multi-level inverter to generate the seven-level output voltage waveform. This study presents an enhanced variable carrier frequency APOD control approach that can successfully lower the overall harmonic distortion rate. The design and completion of the phase-shifting POD and APOD control strategies are followed by an analysis and comparison of the THD situation under various switching frequencies and a simulation and verification of the control strategy using MATLAB simulation. The TI DSP-based control approach has been programmed. The APOD technique increases the output voltage’s THD to 18.27%, while the output current waveform’s THD is reduced to 15.67% by utilizing the APOD PWM technique. Using the POD PWM approach increases the total harmonic distortion (THD) of the voltage waveform by 18.06% and the output current waveform’s THD by 15.45%.

KW - DSP control

KW - level-shifted APOD

KW - level-shifted POD

KW - THD

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85187419248&partnerID=8YFLogxK

U2 - 10.3390/math12050656

DO - 10.3390/math12050656

M3 - Journal articles

AN - SCOPUS:85187419248

VL - 12

JO - Mathematics

JF - Mathematics

SN - 2227-7390

IS - 5

M1 - 656

ER -

DOI

Recently viewed

Publications

  1. Contextualizing certification and auditing
  2. Explaining Investment Dynamics: Empirical Evidence from German New Ventures
  3. Differentiating forest types using TerraSAR–X spotlight images based on inferential statistics and multivariate analysis
  4. Action rate models for predicting actions in soccer
  5. Always on Call: Is There an Age Advantage in Dealing with Availability and Response Expectations?
  6. Modern Baselines for SPARQL Semantic Parsing
  7. Mining product configurator data
  8. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening
  9. Modeling Converging Material Flows In The Supply Chain
  10. Migration-Based Multilingualism in the English as a Foreign Language Classroom
  11. Dynamic performance
  12. Proof of concept
  13. Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing
  14. Object-Oriented Construction Handbook
  15. Do children with deficits in basic cognitive functions profit from mixed age primary schools?
  16. Mechanical properties and microstructures of nano SiC reinforced ZE10 composites prepared with ultrasonic vibration
  17. Theory-based course design for professional master's degree program in business engineering
  18. Time Use Research and Time Use Data
  19. Multi-view hidden markov perceptrons
  20. The Framework for Inclusive Science Education
  21. Material utilization of organic residues
  22. Covert and overt automatic imitation are correlated
  23. Organizing Events for Configuring and Maintaining Creative Fields