Clause identification using entropy guided transformation learning

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Entropy Guided Transformation Learning (ETL) is a machine learning strategy that extends Transformation Based Learning by providing automatic template generation. In this work, we propose an ETL approach to the clause identification task. We use the English language corpus of the CoNLL'2001 shared task. The achieved performance is not competitive yet, since the F β=1 of the ETL based system is 80:55, whereas the state-of-the-art system performance is 85:03. Nevertheless, our modeling strategy is very simple, when compared to the state-of-the-art approaches. These first findings indicate that the ETL approach is a promising one for this task. One can enhance its performance by incorporating problem specific knowledge. Additional features can be easily introduced in the ETL model.

OriginalspracheEnglisch
Titel2009 Seventh Brazilian Symposium in Information and Human Language Technology, STIL 2009 : 8 - 11 September 2009, São Carlos, São Paulo, Brazil; Proceedings
Anzahl der Seiten8
ErscheinungsortPiscataway
VerlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Erscheinungsdatum2009
Seiten117-124
Aufsatznummer5532445
ISBN (Print)978-1-4244-6008-3
ISBN (elektronisch)978-0-7695-3945-4, 978-1-4244-6009-0
DOIs
PublikationsstatusErschienen - 2009
Extern publiziertJa
Veranstaltung7th Brazilian Symposium in Information and Human Language Technology, STIL 2009 - São Carlos, Sao Carlos, Sao Paulo, Brasilien
Dauer: 08.09.200911.09.2009
Konferenznummer: 7
https://www.inf.ufrgs.br/stil09/

DOI