Soft Optimal Computing Methods to Identify Surface Roughness in Manufacturing Using a Monotonic Regressor
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
This contribution deals with the identification of gloss as a function of roughness using particle swarm optimization (PSO) methods. The proposed PSO methods use a least squares method (LSM) as a cost function to be optimized. The nonparametric identification structure uses a Gaussian regressor characterized by three parameters to be estimated. Three different algorithms are proposed: a global classical PSO, an intertwined PSO structure and a PSO structure combined with a linear regression method obtained using a logarithmical transformation. Results using measured data are shown at the end of this analysis to compare the three different techniques.
Originalsprache | Englisch |
---|---|
Titel | Soft Computing : Theories and Applications - Proceedings of SoCTA 2021 |
Herausgeber | Rajesh Kumar, Chang Wook Ahn, Tarun K. Sharma, Om Prakash Verma, Anand Agarwal |
Anzahl der Seiten | 11 |
Erscheinungsort | Cham |
Verlag | Springer Science and Business Media Deutschland GmbH |
Erscheinungsdatum | 2022 |
Seiten | 527-537 |
ISBN (Print) | 978-981-19-0706-7 |
ISBN (elektronisch) | 978-981-19-0707-4 |
DOIs | |
Publikationsstatus | Erschienen - 2022 |
Veranstaltung | 6th International Conference on Soft Computing: Theories and Applications, SoCTA 2021 - Kota, Indien Dauer: 17.12.2021 → 19.12.2021 Konferenznummer: 6 |
- Ingenieurwissenschaften
Fachgebiete
Zugehörige Projekte
OPTIROB: Optimierung der roboterbasierten, hybriden Fertigung
Projekt: Forschung