Business Analytics and Making Decision Based on Kalman Filter in Stock Prediction Case

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

This paper explores the application of the Kalman filter algorithm in estimating the true value of stocks in finance. By filtering out noise from stock price data, the Kalman filter provides insights into the intrinsic worth of stocks, aiding investment decision-making. Combining the Kalman filter (KF) with the Rolling Windows technique enhances trading strategies based on market conditions. The study highlights the simplicity and effectiveness of the Kalman filter and suggests future enhancements, such as incorporating financial models and adapting to market volatility. These directions aim to refine the algorithm’s capabilities in capturing complex financial dynamics and improving prediction accuracy in uncertain market environments.

OriginalspracheEnglisch
Titel5th Congress on Intelligent Systems, CIS 2024 : Volume 1
HerausgeberSandeep Kumar, E.A. Mary Anita, Joong Hoon Kim, Atulya Nagar
Anzahl der Seiten12
VerlagSpringer Science and Business Media Deutschland
Erscheinungsdatum27.05.2025
Seiten309-320
ISBN (Print)9789819626939
ISBN (elektronisch)978-981-96-2694-6
DOIs
PublikationsstatusErschienen - 27.05.2025
Veranstaltung5th Congress on Intelligent Systems, CIS 2024 - Bengaluru, Indien
Dauer: 04.09.202405.09.2024

Bibliographische Notiz

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

DOI