NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. / Schwitalla, P.; Mennerich, Artur; Austermann-Haun, Ute et al.
in: Water Science and Technology, Jahrgang 58, Nr. 2, 01.08.2008, S. 345-350.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Schwitalla, P, Mennerich, A, Austermann-Haun, U, Müller, A, Gruber-Dorninger, C, Daims, H, Holm, NC & Rönner-Holm, SGE 2008, 'NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies', Water Science and Technology, Jg. 58, Nr. 2, S. 345-350. https://doi.org/10.2166/wst.2008.388

APA

Schwitalla, P., Mennerich, A., Austermann-Haun, U., Müller, A., Gruber-Dorninger, C., Daims, H., Holm, N. C., & Rönner-Holm, S. G. E. (2008). NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. Water Science and Technology, 58(2), 345-350. https://doi.org/10.2166/wst.2008.388

Vancouver

Schwitalla P, Mennerich A, Austermann-Haun U, Müller A, Gruber-Dorninger C, Daims H et al. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. Water Science and Technology. 2008 Aug 1;58(2):345-350. doi: 10.2166/wst.2008.388

Bibtex

@article{aae6fb9c9cc64b8aac8cfba6d87d48da,
title = "NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies",
abstract = "Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.",
keywords = "Sustainability sciences, Communication, dynamic simulation, NH4+ adsorption, nitrogen removal, process control, SBR, Dynamic simulation, NH+ 4 adsorption, Nitrogen removal, Process control, SBR",
author = "P. Schwitalla and Artur Mennerich and Ute Austermann-Haun and Anneliese M{\"u}ller and Christiane Gruber-Dorninger and Holger Daims and Holm, {Niels C.} and R{\"o}nner-Holm, {Sabine G. E.}",
year = "2008",
month = aug,
day = "1",
doi = "10.2166/wst.2008.388",
language = "English",
volume = "58",
pages = "345--350",
journal = "Water Science and Technology",
issn = "0273-1223",
publisher = "IWA Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - NH4+ ad-/desorption in sequencing batch reactors

T2 - simulation, laboratory and full-scale studies

AU - Schwitalla, P.

AU - Mennerich, Artur

AU - Austermann-Haun, Ute

AU - Müller, Anneliese

AU - Gruber-Dorninger, Christiane

AU - Daims, Holger

AU - Holm, Niels C.

AU - Rönner-Holm, Sabine G. E.

PY - 2008/8/1

Y1 - 2008/8/1

N2 - Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.

AB - Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.

KW - Sustainability sciences, Communication

KW - dynamic simulation

KW - NH4+ adsorption

KW - nitrogen removal

KW - process control

KW - SBR

KW - Dynamic simulation

KW - NH+ 4 adsorption

KW - Nitrogen removal

KW - Process control

KW - SBR

UR - http://www.scopus.com/inward/record.url?scp=52949103321&partnerID=8YFLogxK

U2 - 10.2166/wst.2008.388

DO - 10.2166/wst.2008.388

M3 - Journal articles

C2 - 18701784

VL - 58

SP - 345

EP - 350

JO - Water Science and Technology

JF - Water Science and Technology

SN - 0273-1223

IS - 2

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. Big Data, Data Trading, and Data Protection
  2. A utilitarian notion of responsibility for sustainability
  3. Responding ASAP? The Role of Age in Dealing with Availability and Response Expectations
  4. Eine Podiumsdiskussion zu Fracking
  5. Negotiating normativity: discourses of (non) belonging and (non) coincidences in the context of transnational adoption
  6. German Teaching and Learning Materials - Lifelong Learning and Competency-Based Instruction
  7. 'Can you play a new CD,please?' Speech act representation in EFL textbooks: An interlanguage pragmatic appraisal (Universität Gießen, invited talk)
  8. What if Civilization Collapses? Management Scholarship in and for Deep Adaption
  9. Can we solve the climate crisis? Contributions from artS, technology and science
  10. WK ORG Workshop - WK ORG 2019
  11. How to make use of evidence based management in entrepreneurship: The example of Personal Initiative Training
  12. Effective working hours and wages: the case of downward adjustment via paid absenteeism
  13. Collective Decisions
  14. “Visual Rhetoric as a three-dimensional practice”
  15. Licht im Dunkeln 2005
  16. 5th European Conference of Apidology - EurBee 2012
  17. Reactivity on a student-centered recording system – a video-based longitudinal study in primary education
  18. Tolerating and inducing temporal asynchronicity in complex innovation journeys
  19. Personal care products as source for micropollutants in Greywater-Identification, quantification and on-site treatment
  20. Sustainability Reporting on the World Wide Web: Developments in Germany
  21. Applied Vegetation Science (Zeitschrift)
  22. Universität Zürich
  23. Deferred Compensation Schemes, Fairness Concerns, and Employment of Older Workers
  24. Forschungspraxis und Selbstsorge in Sensitive Research
  25. Biological Oxidation of Iron with Various Oxidants.
  26. Purpuseful Work Symposium