NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. / Schwitalla, P.; Mennerich, Artur; Austermann-Haun, Ute et al.
In: Water Science and Technology, Vol. 58, No. 2, 01.08.2008, p. 345-350.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

Schwitalla, P, Mennerich, A, Austermann-Haun, U, Müller, A, Gruber-Dorninger, C, Daims, H, Holm, NC & Rönner-Holm, SGE 2008, 'NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies', Water Science and Technology, vol. 58, no. 2, pp. 345-350. https://doi.org/10.2166/wst.2008.388

APA

Schwitalla, P., Mennerich, A., Austermann-Haun, U., Müller, A., Gruber-Dorninger, C., Daims, H., Holm, N. C., & Rönner-Holm, S. G. E. (2008). NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. Water Science and Technology, 58(2), 345-350. https://doi.org/10.2166/wst.2008.388

Vancouver

Schwitalla P, Mennerich A, Austermann-Haun U, Müller A, Gruber-Dorninger C, Daims H et al. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies. Water Science and Technology. 2008 Aug 1;58(2):345-350. doi: 10.2166/wst.2008.388

Bibtex

@article{aae6fb9c9cc64b8aac8cfba6d87d48da,
title = "NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies",
abstract = "Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.",
keywords = "Sustainability sciences, Communication, dynamic simulation, NH4+ adsorption, nitrogen removal, process control, SBR, Dynamic simulation, NH+ 4 adsorption, Nitrogen removal, Process control, SBR",
author = "P. Schwitalla and Artur Mennerich and Ute Austermann-Haun and Anneliese M{\"u}ller and Christiane Gruber-Dorninger and Holger Daims and Holm, {Niels C.} and R{\"o}nner-Holm, {Sabine G. E.}",
year = "2008",
month = aug,
day = "1",
doi = "10.2166/wst.2008.388",
language = "English",
volume = "58",
pages = "345--350",
journal = "Water Science and Technology",
issn = "0273-1223",
publisher = "IWA Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - NH4+ ad-/desorption in sequencing batch reactors

T2 - simulation, laboratory and full-scale studies

AU - Schwitalla, P.

AU - Mennerich, Artur

AU - Austermann-Haun, Ute

AU - Müller, Anneliese

AU - Gruber-Dorninger, Christiane

AU - Daims, Holger

AU - Holm, Niels C.

AU - Rönner-Holm, Sabine G. E.

PY - 2008/8/1

Y1 - 2008/8/1

N2 - Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.

AB - Significant NH 4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH + 4 adVdesorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH + 4 desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH + 4 adsorption at the flocs in the course of the filling phases. This NH + 4 adVdesorption corresponds to an antiparallel K + ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.

KW - Sustainability sciences, Communication

KW - dynamic simulation

KW - NH4+ adsorption

KW - nitrogen removal

KW - process control

KW - SBR

KW - Dynamic simulation

KW - NH+ 4 adsorption

KW - Nitrogen removal

KW - Process control

KW - SBR

UR - http://www.scopus.com/inward/record.url?scp=52949103321&partnerID=8YFLogxK

U2 - 10.2166/wst.2008.388

DO - 10.2166/wst.2008.388

M3 - Journal articles

C2 - 18701784

VL - 58

SP - 345

EP - 350

JO - Water Science and Technology

JF - Water Science and Technology

SN - 0273-1223

IS - 2

ER -

DOI

Recently viewed

Publications

  1. Eliciting Learner Perceptions of Web 2.0 Tasks through Mixed-Methods Classroom Research
  2. Constructs for Assessing Integrated Reports-Testing the Predictive Validity of a Taxonomy for Organization Size, Industry, and Performance
  3. Simulation based comparison of safety-stock calculation methods
  4. Q-Adaptive Control of the nonlinear dynamics of the cantilever-sample system of an Atomic Force Microscope
  5. Selecting and Adapting Methods for Analysis and Design in Value-Sensitive Digital Social Innovation Projects: Toward Design Principles
  6. The effects of different on-line adaptive response time limits on speed and amount of learning in computer assisted instruction and intelligent tutoring
  7. Topic Embeddings – A New Approach to Classify Very Short Documents Based on Predefined Topics
  8. On robustness properties in permanent magnet machine control by using decoupling controller
  9. Integrating the underlying structure of stochasticity into community ecology
  10. Globally asymptotic output feedback tracking of robot manipulators with actuator constraints
  11. Mathematical relation between extended connectivity and eigenvector coefficients.
  12. Should learners use their hands for learning? Results from an eye-tracking study
  13. »HOW TO MAKE YOUR OWN SAMPLES«
  14. Harvesting information from captions for weakly supervised semantic segmentation
  15. Fast, Fully Automated Analysis of Voriconazole from Serum by LC-LC-ESI-MS-MS with Parallel Column-Switching Technique
  16. Analysis And Comparison Of Dispatching RuleBased Scheduling In Dual-Resource Constrained Shop-Floor Scenarios
  17. Closed-form Solution for the Direct Kinematics Problem of the Planar 3-RPR Parallel Mechanism
  18. Exploration strategies, performance, and error consequences when learning a complex computer task
  19. Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting
  20. Construct Objectification and De-Objectification in Organization Theory
  21. Holistic and scalable ranking of RDF data
  22. Lyapunov Convergence Analysis for Asymptotic Tracking Using Forward and Backward Euler Approximation of Discrete Differential Equations
  23. Contextual movement models based on normalizing flows
  24. Global Finite-Time Stabilization of Planar Linear Systems With Actuator Saturation
  25. Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention
  26. Web-scale extension of RDF knowledge bases from templated websites
  27. Clause identification using entropy guided transformation learning
  28. Experimentally established correlation of friction surfacing process temperature and deposit geometry
  29. Interpreting Strings, Weaving Threads