Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers. / Genz, Tobias; Funk, Burkhardt.
Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik 2020. ed. / N. Gronau; M. Heine; H. Krasnova; K. Pousttchi. Vol. 1 Berlin: GITO mbH Verlag, 2020. p. 115-120 8 (WI 2020; Vol. 1).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Genz, T & Funk, B 2020, Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers. in N Gronau, M Heine, H Krasnova & K Pousttchi (eds), Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik 2020. vol. 1, 8, WI 2020, vol. 1, GITO mbH Verlag, Berlin, pp. 115-120, Internationale Tagung Wirtschaftsinformatik - WI 2020, Potsdam, Germany, 09.03.20. https://doi.org/10.30844/wi_2020_a8-genz, https://doi.org/10.30844/wi_2020_zt

APA

Genz, T., & Funk, B. (2020). Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers. In N. Gronau, M. Heine, H. Krasnova, & K. Pousttchi (Eds.), Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik 2020 (Vol. 1, pp. 115-120). Article 8 (WI 2020; Vol. 1). GITO mbH Verlag. https://doi.org/10.30844/wi_2020_a8-genz, https://doi.org/10.30844/wi_2020_zt

Vancouver

Genz T, Funk B. Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers. In Gronau N, Heine M, Krasnova H, Pousttchi K, editors, Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik 2020. Vol. 1. Berlin: GITO mbH Verlag. 2020. p. 115-120. 8. (WI 2020). doi: 10.30844/wi_2020_a8-genz, 10.30844/wi_2020_zt

Bibtex

@inbook{88588ff2fde543e4b410c1dfe76f60b2,
title = "Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers",
abstract = "Literature reviews are an essential but time-consuming part of every research endeavor and play an important role in the quality of the research findings. Traditional tools and literature databases only make use of the textual information and do not consider graphical representations like figures of structural equation models (SEMs). These models are often used in empirical studies to visualize theoretical models and key results. We design and implement an application for image recognition to simplify the search for relevant papers, by automatically recognizing SEM figures in scientific papers stored as PDF files. To classify whether a page in a paper contains an SEM figure we make use of convolutional neural networks and achieve an F1 score of 98,7% together with a recall of 100% for the SEM class. We further describe how we intend to automatically extract information from these SEM figures.",
keywords = "Business informatics, Structural equation models, deep neural networks, information extraction, literature review, Structural equation models, deep neural networks, information extraction, literature review",
author = "Tobias Genz and Burkhardt Funk",
note = "Bd. 1: Zentrale Tracks. Motto “Changing Landscapes{"} Publisher Copyright: {\textcopyright} Proceedings of the 15th International Conference on Business Information Systems 2020 {"}Developments, Opportunities and Challenges of Digitization{"}, WIRTSCHAFTSINFORMATIK 2020.; Internationale Tagung Wirtschaftsinformatik - WI 2020 ; Conference date: 09-03-2020 Through 11-03-2020",
year = "2020",
month = mar,
day = "9",
doi = "10.30844/wi_2020_a8-genz",
language = "English",
volume = "1",
series = "WI 2020",
publisher = "GITO mbH Verlag",
pages = "115--120",
editor = "N. Gronau and Heine, {M. } and H. Krasnova and K. Pousttchi",
booktitle = "Entwicklungen, Chancen und Herausforderungen der Digitalisierung",
address = "Germany",
url = "https://wi2020.de/de/start",

}

RIS

TY - CHAP

T1 - Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers

AU - Genz, Tobias

AU - Funk, Burkhardt

N1 - Conference code: 15

PY - 2020/3/9

Y1 - 2020/3/9

N2 - Literature reviews are an essential but time-consuming part of every research endeavor and play an important role in the quality of the research findings. Traditional tools and literature databases only make use of the textual information and do not consider graphical representations like figures of structural equation models (SEMs). These models are often used in empirical studies to visualize theoretical models and key results. We design and implement an application for image recognition to simplify the search for relevant papers, by automatically recognizing SEM figures in scientific papers stored as PDF files. To classify whether a page in a paper contains an SEM figure we make use of convolutional neural networks and achieve an F1 score of 98,7% together with a recall of 100% for the SEM class. We further describe how we intend to automatically extract information from these SEM figures.

AB - Literature reviews are an essential but time-consuming part of every research endeavor and play an important role in the quality of the research findings. Traditional tools and literature databases only make use of the textual information and do not consider graphical representations like figures of structural equation models (SEMs). These models are often used in empirical studies to visualize theoretical models and key results. We design and implement an application for image recognition to simplify the search for relevant papers, by automatically recognizing SEM figures in scientific papers stored as PDF files. To classify whether a page in a paper contains an SEM figure we make use of convolutional neural networks and achieve an F1 score of 98,7% together with a recall of 100% for the SEM class. We further describe how we intend to automatically extract information from these SEM figures.

KW - Business informatics

KW - Structural equation models

KW - deep neural networks

KW - information extraction

KW - literature review

KW - Structural equation models

KW - deep neural networks

KW - information extraction

KW - literature review

UR - http://www.scopus.com/inward/record.url?scp=85101711718&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/0f33ecfe-9090-30a3-919f-3def5d3cd44e/

U2 - 10.30844/wi_2020_a8-genz

DO - 10.30844/wi_2020_a8-genz

M3 - Article in conference proceedings

VL - 1

T3 - WI 2020

SP - 115

EP - 120

BT - Entwicklungen, Chancen und Herausforderungen der Digitalisierung

A2 - Gronau, N.

A2 - Heine, M.

A2 - Krasnova, H.

A2 - Pousttchi, K.

PB - GITO mbH Verlag

CY - Berlin

T2 - Internationale Tagung Wirtschaftsinformatik - WI 2020

Y2 - 9 March 2020 through 11 March 2020

ER -

DOI

Recently viewed

Publications

  1. Advances in Dynamics, Optimization and Computation
  2. Tree diversity and mycorrhizal type co-determine multitrophic ecosystem functions
  3. "Die Arbeit funktioniert"
  4. Leverage points 2019
  5. "Introduction," communication +1
  6. Beyond academic discourse
  7. The use of pseudo-causal narratives in EU policies
  8. Diversity Management and Corporate Change: Implications for Co-Determination
  9. An Extended Kalman Filter as an Observer in a Sliding Mode Controller for a Metal-Polymer Composite Actuator
  10. Computational Study of Three-Dimensional Lagrangian Transport and Mixing in a Stirred Tank Reactor  
  11. Testing Lazear's Jack-of-all-trades
  12. How to Predict Mood?
  13. The importance of school leaders in school health promotion. A European call for systematic integration of health in professional development
  14. Qu'est-ce que la "stakeholder value"?
  15. Credit Constraints, Foreign Ownership, and Foreign Takeovers in Germany
  16. From deforestation to blossom
  17. How to Curate Diversity and Otherness in Global Performance Art
  18. Communicative intentions in context
  19. Modelling ammonia losses after field application of biogas slurry in energy crop rotations
  20. Von Differenz zu Vielfalt zu Super-Diversity
  21. Anti-Fascist Exile, Political Print Media, and the Variable Tactics of the Communists in Mexico (1939–1946)
  22. Can learning to move foster sustainable development? A systematic literature review examining the potential of sport and physical activity in the context of environmental and sustainability education
  23. Exploring Traps in Forest and Marine Socio-Ecological Systems of Southern and Austral Chile
  24. Inquiry-based Science Education and Special Needs – Teachers’ Reflections on an Inclusive Setting
  25. Explaining renewable energy consumption among students
  26. The adaptive eater
  27. Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment
  28. § 15 Verbundene Unternehmen
  29. Evaluating the German version of the Work Ability Survey-R (WAS-R)