Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities

Research output: Journal contributionsJournal articlesResearchpeer-review


  • Leen Depauw
  • Michael P. Perring
  • Dries Landuyt
  • Sybryn L. Maes
  • Haben Blondeel
  • Emiel De Lombaerde
  • Guntis Brūmelis
  • Jörg Brunet
  • Déborah Closset-Kopp
  • Janusz Czerepko
  • Guillaume Decocq
  • Jan den Ouden
  • Radosław Gawryś
  • Radim Hédl
  • Thilo Heinken
  • Steffi Heinrichs
  • Bogdan Jaroszewicz
  • Martin Kopecký
  • Ilze Liepiņa
  • Martin Macek
  • František Máliš
  • Wolfgang Schmidt
  • Simon M. Smart
  • Karol Ujházy
  • Monika Wulf
  • Kris Verheyen

A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land-use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land-use history, distinguishing ancient and recent (i.e. post-agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot-scale. Land-use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land-use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land-use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land-use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi-natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.

Original languageEnglish
JournalJournal of Ecology
Issue number4
Pages (from-to)1411-1425
Number of pages15
Publication statusPublished - 01.07.2020

    Research areas

  • atmospheric depositions, biodiversity measures, climate change, forest canopy features, functional signature, post-agricultural forests, resurvey
  • Ecosystems Research