A Matlab/Simulink toolbox for inversion of local linear model trees

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

A Matlab/Simulink toolbox for inversion of local linear model trees. / Nentwig, M.; Mercorelli, P.
In: IAENG International Journal of Computer Science, Vol. 37, No. 1, 02.2010, p. 19-26.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{1342729c88b94e43ba6e1a9ef5935162,
title = "A Matlab/Simulink toolbox for inversion of local linear model trees",
abstract = "Models in the form of characteristic diagrams or more specifically, in the form of engine operating maps are mostly used in the automobile industry. This yields a large amount of measurements and involves the use of advanced instrumentations. This paper shows a developed software environment, namely a toolbox for the program Matlab/Simulink developed by company Mathworks. The name of the toolbox is {"}Inversion of the Local Linear Model Trees{"} and it basically consists of a local inversion of the Local Linear Model Trees (LOLIMOT). The importance of the inversion in control problems is widely known. Neural networks are a very effective and popular tools mostly used for modeling. The inversion of a neural network produces real possibilities to involve the networks in the control problem schemes. The developed toolbox is explained with the help of diagrams and GUI structure from Matlab which tend to clarify the idea of the program and its structure. The presentation is organized as a short tutorial of the toolbox, so that a potential user can directly understand how to access it. Nevertheless, formal mathematical equations, concerning the neural networks and membership functions, need to be explained together with the LOLIMOT structure. To validate and to clarify the explained toolbox, an example from a system used in the automobile industry is briefly shown.",
keywords = "Engineering, Inversion, Local linear model trees (LOLIMOT), Matlab/Simulink, Neuro-fuzzy identification, Nonlinear systems",
author = "M. Nentwig and P. Mercorelli",
note = "Export Date: 22 May 2012 Source: Scopus Language of Original Document: English Correspondence Address: Nentwig, M.; University of Applied Sciences Ostfalia, Department of Automotive Engineering, Robert-Koch-Platz 10 - 14, 38440 Wolfsburg, Germany; email: mail@mnentwig.de References: Toepfer, A., Fink, A., (2003), Technical report - on the inversion of nonlinear modelsIsermann, R., Fink, A., Toepfer, S., Neuro and neurofuzzy identification for model-based control (2001) IFAC Workshop on Advanced Fuzzy/Neural Control, Valencia, Spain, Q, pp. 111-116; Isermann, R., Fink, A., Toepfer, S., Nonlinear modelbased control with local linear neuro-fuzzy models (2003) Archive of Applied Mechanics, 72 (11-12), pp. 911-922; Fink, A., Nelles, O., Nonlinear internal model control based on local linear neural networks (2001) IEEE Systems, Man, and Cybernetics, Tucson, , USA; Mercorelli, P., An optimal minimum phase approximating pd regulator for robust control of a throttle plate (2006) 45th IEEE Conference on Decision and Control (CDC2006), , San Diego (USA), 13th-15th December; Nelles, O., (1999) Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, , Shaker Verlag; Isermann, R., Nelles, O., Fink, A., Local linear model trees (lolimot) toolbox for nonlinear system identification (2000) 12th IFAC Symposium on System Identification (SYSID), , Santa Barbara, USA",
year = "2010",
month = feb,
language = "English",
volume = "37",
pages = "19--26",
journal = "IAENG International Journal of Computer Science",
issn = "1819-656X",
publisher = "International Association of Engineers",
number = "1",

}

RIS

TY - JOUR

T1 - A Matlab/Simulink toolbox for inversion of local linear model trees

AU - Nentwig, M.

AU - Mercorelli, P.

N1 - Export Date: 22 May 2012 Source: Scopus Language of Original Document: English Correspondence Address: Nentwig, M.; University of Applied Sciences Ostfalia, Department of Automotive Engineering, Robert-Koch-Platz 10 - 14, 38440 Wolfsburg, Germany; email: mail@mnentwig.de References: Toepfer, A., Fink, A., (2003), Technical report - on the inversion of nonlinear modelsIsermann, R., Fink, A., Toepfer, S., Neuro and neurofuzzy identification for model-based control (2001) IFAC Workshop on Advanced Fuzzy/Neural Control, Valencia, Spain, Q, pp. 111-116; Isermann, R., Fink, A., Toepfer, S., Nonlinear modelbased control with local linear neuro-fuzzy models (2003) Archive of Applied Mechanics, 72 (11-12), pp. 911-922; Fink, A., Nelles, O., Nonlinear internal model control based on local linear neural networks (2001) IEEE Systems, Man, and Cybernetics, Tucson, , USA; Mercorelli, P., An optimal minimum phase approximating pd regulator for robust control of a throttle plate (2006) 45th IEEE Conference on Decision and Control (CDC2006), , San Diego (USA), 13th-15th December; Nelles, O., (1999) Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, , Shaker Verlag; Isermann, R., Nelles, O., Fink, A., Local linear model trees (lolimot) toolbox for nonlinear system identification (2000) 12th IFAC Symposium on System Identification (SYSID), , Santa Barbara, USA

PY - 2010/2

Y1 - 2010/2

N2 - Models in the form of characteristic diagrams or more specifically, in the form of engine operating maps are mostly used in the automobile industry. This yields a large amount of measurements and involves the use of advanced instrumentations. This paper shows a developed software environment, namely a toolbox for the program Matlab/Simulink developed by company Mathworks. The name of the toolbox is "Inversion of the Local Linear Model Trees" and it basically consists of a local inversion of the Local Linear Model Trees (LOLIMOT). The importance of the inversion in control problems is widely known. Neural networks are a very effective and popular tools mostly used for modeling. The inversion of a neural network produces real possibilities to involve the networks in the control problem schemes. The developed toolbox is explained with the help of diagrams and GUI structure from Matlab which tend to clarify the idea of the program and its structure. The presentation is organized as a short tutorial of the toolbox, so that a potential user can directly understand how to access it. Nevertheless, formal mathematical equations, concerning the neural networks and membership functions, need to be explained together with the LOLIMOT structure. To validate and to clarify the explained toolbox, an example from a system used in the automobile industry is briefly shown.

AB - Models in the form of characteristic diagrams or more specifically, in the form of engine operating maps are mostly used in the automobile industry. This yields a large amount of measurements and involves the use of advanced instrumentations. This paper shows a developed software environment, namely a toolbox for the program Matlab/Simulink developed by company Mathworks. The name of the toolbox is "Inversion of the Local Linear Model Trees" and it basically consists of a local inversion of the Local Linear Model Trees (LOLIMOT). The importance of the inversion in control problems is widely known. Neural networks are a very effective and popular tools mostly used for modeling. The inversion of a neural network produces real possibilities to involve the networks in the control problem schemes. The developed toolbox is explained with the help of diagrams and GUI structure from Matlab which tend to clarify the idea of the program and its structure. The presentation is organized as a short tutorial of the toolbox, so that a potential user can directly understand how to access it. Nevertheless, formal mathematical equations, concerning the neural networks and membership functions, need to be explained together with the LOLIMOT structure. To validate and to clarify the explained toolbox, an example from a system used in the automobile industry is briefly shown.

KW - Engineering

KW - Inversion

KW - Local linear model trees (LOLIMOT)

KW - Matlab/Simulink

KW - Neuro-fuzzy identification

KW - Nonlinear systems

UR - http://www.scopus.com/inward/record.url?scp=77956486937&partnerID=8YFLogxK

M3 - Journal articles

VL - 37

SP - 19

EP - 26

JO - IAENG International Journal of Computer Science

JF - IAENG International Journal of Computer Science

SN - 1819-656X

IS - 1

ER -

Recently viewed

Publications

  1. Using Language Learning Resources on YouTube
  2. Cognitive Predictors of Child Second Language Comprehension and Syntactic Learning
  3. Errors in Training Computer Skills
  4. A Theoretical Dynamical Noninteracting Model for General Manipulation Systems Using Axiomatic Geometric Structures
  5. Using augmented video to test in-car user experiences of context analog HUDs
  6. GENESIS - A generic RDF data access interface
  7. Cognitive load and instructionally supported learning with provided and learner-generated visualizations
  8. Towards an Interoperable Ecosystem of AI and LT Platforms: A Roadmap for the Implementation of Different Levels of Interoperability
  9. A Multimethod Latent State-Trait Model for Structurally Different and Interchangeable Methods
  10. In-Vehicle Sensor System for Monitoring Efficiency of Vehicle E/E Architectures
  11. Acceleration of material-dominated calculations via phase-space simplicial subdivision and interpolation
  12. Mechanism of dynamic recrystallization and evolution of texture in the hot working domains of the processing map for Mg-4Al-2Ba-2Ca Alloy
  13. An Interactive Layers Model of Self-Regulated Learning and Cognitive Load
  14. How Much Home Office is Ideal? A Multi-Perspective Algorithm
  15. ActiveMath - a Learning Platform With Semantic Web Features
  16. Correlation of Microstructure and Local Mechanical Properties Along Build Direction for Multi-layer Friction Surfacing of Aluminum Alloys
  17. Binary Random Nets II
  18. Eliciting Learner Perceptions of Web 2.0 Tasks through Mixed-Methods Classroom Research
  19. Multiphase-field modeling of temperature-driven intermetallic compound evolution in an Al-Mg system for application to solid-state joining processes
  20. Guided discovery learning with computer-based simulation games
  21. Functional Richness and Relative Resilience of Bird Communities in Regions with Different Land Use Intensities
  22. Advantages and Disadvanteges of Different Text Coding Procedures for Research and Practice in a School Context
  23. Bayesian Parameter Estimation in Green Business Process Management
  24. Is implicit Theory of Mind real but hard to detect?
  25. Organizing Events for Configuring and Maintaining Creative Fields
  26. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment
  27. Kontext
  28. Wireless power transmission via a multi-coil inductive system