Reducing mean tardiness in a flexible job shop containing AGVs with optimized combinations of sequencing and routing rules
Publikation: Beiträge in Zeitschriften › Konferenzaufsätze in Fachzeitschriften › Forschung › begutachtet
Authors
The complexity of flexible job shop problems increases significantly when using autonomous guided vehicles (AGVs) for material handling. In this study, priority rules - commonly known for their simplicity and small computation time - for sequencing operations, routing jobs and dispatching vehicles are applied. Based on a discrete event simulation study with stochastic inter-arrival times, an artificial neural network is trained to learn interaction effects between the combination of different rules for sequencing, dispatching, routing, and the resulting system performance. Based on the trained network the combination of rules is optimized, reducing the mean tardiness of the jobs under varying system performance.
Originalsprache | Englisch |
---|---|
Zeitschrift | Procedia CIRP |
Jahrgang | 81 |
Seiten (von - bis) | 1136-1141 |
Anzahl der Seiten | 6 |
ISSN | 2212-8271 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2019 |
Veranstaltung | Conference on Manufacturing Systems - CIRP 2019: Manufacturing Systems for the Future Societies - Grand Hotel Union, Ljubljana, Slowenien Dauer: 12.06.2019 → 14.06.2019 Konferenznummer: 52 https://www.cirp-cms2019.org/ |
Bibliographische Notiz
Publisher Copyright:
© 2019 The Authors. Published by Elsevier Ltd.
- Ingenieurwissenschaften
Fachgebiete
Zugehörige Projekte
Optimierung von dezentralen Ansätzen zur Belegung fahrerloser Transportsysteme
Projekt: Dissertationsprojekt
Zugehörige Aktivitäten
Konferenzvortrag in der Session "Automated Guided Vehicles"
Aktivität: Vorträge und Gastvorlesungen › Konferenzvorträge › Forschung