Reducing mean tardiness in a flexible job shop containing AGVs with optimized combinations of sequencing and routing rules

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Authors

The complexity of flexible job shop problems increases significantly when using autonomous guided vehicles (AGVs) for material handling. In this study, priority rules - commonly known for their simplicity and small computation time - for sequencing operations, routing jobs and dispatching vehicles are applied. Based on a discrete event simulation study with stochastic inter-arrival times, an artificial neural network is trained to learn interaction effects between the combination of different rules for sequencing, dispatching, routing, and the resulting system performance. Based on the trained network the combination of rules is optimized, reducing the mean tardiness of the jobs under varying system performance.
OriginalspracheEnglisch
ZeitschriftProcedia CIRP
Jahrgang81
Seiten (von - bis)1136-1141
Anzahl der Seiten6
ISSN2212-8271
DOIs
PublikationsstatusErschienen - 01.01.2019
VeranstaltungConference on Manufacturing Systems - CIRP 2019: Manufacturing Systems for the Future Societies - Grand Hotel Union, Ljubljana, Slowenien
Dauer: 12.06.201914.06.2019
Konferenznummer: 52
https://www.cirp-cms2019.org/

Bibliographische Notiz

Publisher Copyright:
© 2019 The Authors. Published by Elsevier Ltd.

Zugehörige Projekte

  • Optimierung von dezentralen Ansätzen zur Belegung fahrerloser Transportsysteme

    Projekt: Dissertationsprojekt

Zugehörige Aktivitäten

Dokumente

DOI