Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Standard

Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception. / Alaniz-Plata, Ruben; Lopez-Medina, Fernando; Sergiyenko, Oleg et al.
in: IECON Proceedings (Industrial Electronics Conference), 2024.

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Harvard

Alaniz-Plata, R, Lopez-Medina, F, Sergiyenko, O, Nuñez-López, JA, Sepulveda-Valdez, C, Meza-García, D, Villa-Manríquez, JF, Andrade-Collazo, H, Flores-Fuentes, W, Rodríguez-Quiñonez, JC, Tyrsa, V, Castro-Toscano, MJ & Mercorelli, P 2024, 'Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception', IECON Proceedings (Industrial Electronics Conference). https://doi.org/10.1109/IECON55916.2024.10984228

APA

Alaniz-Plata, R., Lopez-Medina, F., Sergiyenko, O., Nuñez-López, J. A., Sepulveda-Valdez, C., Meza-García, D., Villa-Manríquez, J. F., Andrade-Collazo, H., Flores-Fuentes, W., Rodríguez-Quiñonez, J. C., Tyrsa, V., Castro-Toscano, M. J., & Mercorelli, P. (2024). Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception. IECON Proceedings (Industrial Electronics Conference). https://doi.org/10.1109/IECON55916.2024.10984228

Vancouver

Alaniz-Plata R, Lopez-Medina F, Sergiyenko O, Nuñez-López JA, Sepulveda-Valdez C, Meza-García D et al. Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception. IECON Proceedings (Industrial Electronics Conference). 2024. doi: 10.1109/IECON55916.2024.10984228

Bibtex

@article{a6799ffae9b9498e8dcbb23ef27df195,
title = "Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception",
abstract = "To achieve successful autonomous navigation, a vision system that provides continuous and precise three-dimensional data of the system's surroundings is always needed. An indispensable step in the acquisition of reliable data is the calibration of the system, preferably with a time-efficient and low-complexity approach. In this paper, a robust and efficient calibration method is proposed for the information fusion of a stereo vision system and a Technical Vision System. The proposed methodology achieves an error of xe = 6.9401 mm, ye = 8.0997 mm and ze = 15.1822 mm in 3.0202 seconds of processing time, as proven through experimental results.",
keywords = "Artificial Vision, Calibration, Sensor Fusion",
author = "Ruben Alaniz-Plata and Fernando Lopez-Medina and Oleg Sergiyenko and Nu{\~n}ez-L{\'o}pez, {Jos{\'e} A.} and Cesar Sepulveda-Valdez and David Meza-Garc{\'i}a and Villa-Manr{\'i}quez, {J. Fabi{\'a}n} and Humberto Andrade-Collazo and Wendy Flores-Fuentes and Rodr{\'i}guez-Qui{\~n}onez, {Julio C.} and Vera Tyrsa and Castro-Toscano, {Mois{\'e}s Jes{\'u}s} and Paolo Mercorelli",
note = "Publisher Copyright: {\textcopyright} 2024 IEEE.; 50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024 ; Conference date: 03-11-2024 Through 06-11-2024",
year = "2024",
doi = "10.1109/IECON55916.2024.10984228",
language = "English",
journal = "IECON Proceedings (Industrial Electronics Conference)",
issn = "2162-4704",
publisher = "IEEE - Institute of Electrical and Electronics Engineers Inc.",

}

RIS

TY - JOUR

T1 - Joint calibration of Machine Vision subsystems for robuster surrounding 3D perception

AU - Alaniz-Plata, Ruben

AU - Lopez-Medina, Fernando

AU - Sergiyenko, Oleg

AU - Nuñez-López, José A.

AU - Sepulveda-Valdez, Cesar

AU - Meza-García, David

AU - Villa-Manríquez, J. Fabián

AU - Andrade-Collazo, Humberto

AU - Flores-Fuentes, Wendy

AU - Rodríguez-Quiñonez, Julio C.

AU - Tyrsa, Vera

AU - Castro-Toscano, Moisés Jesús

AU - Mercorelli, Paolo

N1 - Publisher Copyright: © 2024 IEEE.

PY - 2024

Y1 - 2024

N2 - To achieve successful autonomous navigation, a vision system that provides continuous and precise three-dimensional data of the system's surroundings is always needed. An indispensable step in the acquisition of reliable data is the calibration of the system, preferably with a time-efficient and low-complexity approach. In this paper, a robust and efficient calibration method is proposed for the information fusion of a stereo vision system and a Technical Vision System. The proposed methodology achieves an error of xe = 6.9401 mm, ye = 8.0997 mm and ze = 15.1822 mm in 3.0202 seconds of processing time, as proven through experimental results.

AB - To achieve successful autonomous navigation, a vision system that provides continuous and precise three-dimensional data of the system's surroundings is always needed. An indispensable step in the acquisition of reliable data is the calibration of the system, preferably with a time-efficient and low-complexity approach. In this paper, a robust and efficient calibration method is proposed for the information fusion of a stereo vision system and a Technical Vision System. The proposed methodology achieves an error of xe = 6.9401 mm, ye = 8.0997 mm and ze = 15.1822 mm in 3.0202 seconds of processing time, as proven through experimental results.

KW - Artificial Vision

KW - Calibration

KW - Sensor Fusion

UR - http://www.scopus.com/inward/record.url?scp=105005725816&partnerID=8YFLogxK

U2 - 10.1109/IECON55916.2024.10984228

DO - 10.1109/IECON55916.2024.10984228

M3 - Conference article in journal

AN - SCOPUS:105005725816

JO - IECON Proceedings (Industrial Electronics Conference)

JF - IECON Proceedings (Industrial Electronics Conference)

SN - 2162-4704

T2 - 50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024

Y2 - 3 November 2024 through 6 November 2024

ER -

DOI