Identification of structure-biodegradability relationships for ionic liquids - clustering of a dataset based on structural similarity

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Identification of structure-biodegradability relationships for ionic liquids - clustering of a dataset based on structural similarity. / Amsel, Ann Kathrin; Olsson, Oliver; Kümmerer, Klaus.
in: Green Chemistry , Jahrgang 25, Nr. 22, 29.09.2023, S. 9226-9250.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{f40346ddde7e4837b8e5d2e8efaa6c82,
title = "Identification of structure-biodegradability relationships for ionic liquids - clustering of a dataset based on structural similarity",
abstract = "Environmentally open applications as herbicides or active pharmaceutical ingredients are discussed for ionic liquids (ILs). Since most of the ILs are not readily biodegradable in the environment, they may persist there. To prevent the accumulation of persistent and toxic ILs, both the cation and anion need to be designed to completely mineralise in the environment. Several studies summarised structure-biodegradability relationships (SBRs) and gained rules of thumb for ILs{\textquoteright} biodegradability based on the available literature data. However, no study systematically analysed a dataset using an in silico tool. Therefore, to identify SBRs a dataset on the ready biodegradability of 508 ILs was clustered according to IL similarity by using the software Canvas by Schr{\"o}dinger. The biodegradability was divided into three classes (biodegradation rates 0-19%, 20-59% and ≥60%). The identified SBRs were compared with the available rules of thumb from the literature. The results show that the cholinium cation and its derivatives acetylcholine, betaine and carnitine are promising candidates for designing environmentally mineralising ILs if a good biodegradable anion is chosen. Imidazolium and phosphonium ILs should be avoided. For pyrrolidinium and quaternary ammonium compounds cations containing ester or carboxyl groups in side chains and alkylsulphate anions should be tested to close gaps in SBRs and possibly design a mineralising IL. Due to the limited data of morpholinium, 1,4-diazabicyclo[2.2.2]octanium (DABCO), piperidinium, prolinium, piperazinium and thiazolium ILs, SBRs could not be clearly identified. Further research is needed on whether structural adjustments according to the findings can increase the biodegradability of not yet fully degrading (20-59%) ILs.",
keywords = "Chemistry",
author = "Amsel, {Ann Kathrin} and Oliver Olsson and Klaus K{\"u}mmerer",
note = "Funding Information: We would like to thank the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) and the German Umweltbundesamt (UBA) for their support with the International Sustainable Chemistry Collaborative Centre (ISC3) activities. We thank our colleagues Stefanie Lorenz and Morten Suk for fruitful discussions on the biodegradability of ILs and on clustering compounds. Publisher Copyright: {\textcopyright} 2023 The Royal Society of Chemistry.",
year = "2023",
month = sep,
day = "29",
doi = "10.1039/d3gc02392c",
language = "English",
volume = "25",
pages = "9226--9250",
journal = "Green Chemistry ",
issn = "1463-9262",
publisher = "Royal Society of Chemistry",
number = "22",

}

RIS

TY - JOUR

T1 - Identification of structure-biodegradability relationships for ionic liquids - clustering of a dataset based on structural similarity

AU - Amsel, Ann Kathrin

AU - Olsson, Oliver

AU - Kümmerer, Klaus

N1 - Funding Information: We would like to thank the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) and the German Umweltbundesamt (UBA) for their support with the International Sustainable Chemistry Collaborative Centre (ISC3) activities. We thank our colleagues Stefanie Lorenz and Morten Suk for fruitful discussions on the biodegradability of ILs and on clustering compounds. Publisher Copyright: © 2023 The Royal Society of Chemistry.

PY - 2023/9/29

Y1 - 2023/9/29

N2 - Environmentally open applications as herbicides or active pharmaceutical ingredients are discussed for ionic liquids (ILs). Since most of the ILs are not readily biodegradable in the environment, they may persist there. To prevent the accumulation of persistent and toxic ILs, both the cation and anion need to be designed to completely mineralise in the environment. Several studies summarised structure-biodegradability relationships (SBRs) and gained rules of thumb for ILs’ biodegradability based on the available literature data. However, no study systematically analysed a dataset using an in silico tool. Therefore, to identify SBRs a dataset on the ready biodegradability of 508 ILs was clustered according to IL similarity by using the software Canvas by Schrödinger. The biodegradability was divided into three classes (biodegradation rates 0-19%, 20-59% and ≥60%). The identified SBRs were compared with the available rules of thumb from the literature. The results show that the cholinium cation and its derivatives acetylcholine, betaine and carnitine are promising candidates for designing environmentally mineralising ILs if a good biodegradable anion is chosen. Imidazolium and phosphonium ILs should be avoided. For pyrrolidinium and quaternary ammonium compounds cations containing ester or carboxyl groups in side chains and alkylsulphate anions should be tested to close gaps in SBRs and possibly design a mineralising IL. Due to the limited data of morpholinium, 1,4-diazabicyclo[2.2.2]octanium (DABCO), piperidinium, prolinium, piperazinium and thiazolium ILs, SBRs could not be clearly identified. Further research is needed on whether structural adjustments according to the findings can increase the biodegradability of not yet fully degrading (20-59%) ILs.

AB - Environmentally open applications as herbicides or active pharmaceutical ingredients are discussed for ionic liquids (ILs). Since most of the ILs are not readily biodegradable in the environment, they may persist there. To prevent the accumulation of persistent and toxic ILs, both the cation and anion need to be designed to completely mineralise in the environment. Several studies summarised structure-biodegradability relationships (SBRs) and gained rules of thumb for ILs’ biodegradability based on the available literature data. However, no study systematically analysed a dataset using an in silico tool. Therefore, to identify SBRs a dataset on the ready biodegradability of 508 ILs was clustered according to IL similarity by using the software Canvas by Schrödinger. The biodegradability was divided into three classes (biodegradation rates 0-19%, 20-59% and ≥60%). The identified SBRs were compared with the available rules of thumb from the literature. The results show that the cholinium cation and its derivatives acetylcholine, betaine and carnitine are promising candidates for designing environmentally mineralising ILs if a good biodegradable anion is chosen. Imidazolium and phosphonium ILs should be avoided. For pyrrolidinium and quaternary ammonium compounds cations containing ester or carboxyl groups in side chains and alkylsulphate anions should be tested to close gaps in SBRs and possibly design a mineralising IL. Due to the limited data of morpholinium, 1,4-diazabicyclo[2.2.2]octanium (DABCO), piperidinium, prolinium, piperazinium and thiazolium ILs, SBRs could not be clearly identified. Further research is needed on whether structural adjustments according to the findings can increase the biodegradability of not yet fully degrading (20-59%) ILs.

KW - Chemistry

UR - http://www.scopus.com/inward/record.url?scp=85175463584&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/aeb7fc96-0f4d-3695-8827-2cfd069b9b53/

U2 - 10.1039/d3gc02392c

DO - 10.1039/d3gc02392c

M3 - Journal articles

AN - SCOPUS:85175463584

VL - 25

SP - 9226

EP - 9250

JO - Green Chemistry

JF - Green Chemistry

SN - 1463-9262

IS - 22

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. ProDoc Workshop VIII - 2013
  2. Efficacy of an Internet-based problem-solving training for teachers: Results of a randomized controlled trial.
  3. International Symposium on Multiscale Computational Analysis of Complex Materials
  4. Clouds and Balloons
  5. A behavioral science view onto climate risk and uncertainty communications
  6. Bi-annual General Assembly of the World Values Survey Association - WVS 2014
  7. High resolution assessment and modelling of suspended sediment in an agricultural catchment
  8. The Future of International Sanctions
  9. Global Alliance for Sustainable Universities
  10. Examining the spatiotemporal patterns of exotic species along the Sani Pass: Mechanisms and Management
  11. Foreign Policy Reconciliation and Public Opinion
  12. JURE 2024 (Veranstaltung)
  13. “Human Impacts & Exploring Sanctions Termination”
  14. Weiterbildung (Organisation)
  15. Field release modelling of pesticides and their transformation products during a first significant rainfall in a semi-arid region
  16. Lesung & Diskussion: "Liebesmühe"
  17. 4th International Conference on Health Promotion in Schools
  18. Lesung & Diskussion: "Liebesmühe"
  19. “Divert When It Does Not Hurt: The Initiation of Economic Sanctions by US Presidents from 1989 to 2015”
  20. „Is it all about profit? Corruption in European Comparative Perspective”
  21. Journal of Hydrology (Zeitschrift)
  22. Economic Sanctions in the 21st Century
  23. Representing Future Generations in Parliament
  24. 8th Biennial International Interdisciplinary Conference 2014
  25. Mark Twain:: Epiker Amerikas
  26. Technion – Israel Institute of Technology
  27. “No Future for the JCPOA? The Iranian Nuclear File and Proliferation Risk in the Middle East”