Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschung

Standard

Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection. / Pandey, Ambrish; Schneide, Christiane; Padberg-Gehle, Kathrin et al.
NIC Symposium 2018: 22-23 February 2018, Jülich, Germany : proceedings. Hrsg. / Kurt Binder; Marcus Müller; Alexander Trautmann. Jülich: Forschungszentrum Jülich , 2018. S. 421-428 (NIC Series; Band 49).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschung

Harvard

Pandey, A, Schneide, C, Padberg-Gehle, K, Scheel, JD & Schumacher, J 2018, Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection. in K Binder, M Müller & A Trautmann (Hrsg.), NIC Symposium 2018: 22-23 February 2018, Jülich, Germany : proceedings. NIC Series, Bd. 49, Forschungszentrum Jülich , Jülich, S. 421-428, NIC Symposium 2018, Jülich, Deutschland, 22.02.18. <http://hdl.handle.net/2128/18561>

APA

Pandey, A., Schneide, C., Padberg-Gehle, K., Scheel, J. D., & Schumacher, J. (2018). Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection. In K. Binder, M. Müller, & A. Trautmann (Hrsg.), NIC Symposium 2018: 22-23 February 2018, Jülich, Germany : proceedings (S. 421-428). (NIC Series; Band 49). Forschungszentrum Jülich . http://hdl.handle.net/2128/18561

Vancouver

Pandey A, Schneide C, Padberg-Gehle K, Scheel JD, Schumacher J. Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection. in Binder K, Müller M, Trautmann A, Hrsg., NIC Symposium 2018: 22-23 February 2018, Jülich, Germany : proceedings. Jülich: Forschungszentrum Jülich . 2018. S. 421-428. (NIC Series).

Bibtex

@inbook{d56d7424a3d342cdbfca542e50f7fb07,
title = "Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-B{\'e}nard convection",
abstract = "Large-scale computations in combination with new mathematical analysis tools make studies of the large-scale patterns, which are termed turbulent superstructures, in extended turbulent convection flows now accessible. Here, we report recent analyses in the Eulerian and Lagrangian frames of reference that reveal the characteristic spatial and temporal scales of the patterns as a function of Prandtl number, the dimensionless number which relates momentum to temperature diffusion in the working fluid.",
keywords = "Mathematics",
author = "Ambrish Pandey and Christiane Schneide and Kathrin Padberg-Gehle and Scheel, {Janet D.} and J{\"o}rg Schumacher",
year = "2018",
language = "English",
series = "NIC Series",
publisher = "Forschungszentrum J{\"u}lich ",
pages = "421--428",
editor = "Kurt Binder and Marcus M{\"u}ller and Alexander Trautmann",
booktitle = "NIC Symposium 2018",
note = "NIC Symposium 2018 ; Conference date: 22-02-2018 Through 23-02-2018",

}

RIS

TY - CHAP

T1 - Eulerian and Lagrangian perspectives on turbulent superstructures in Rayleigh-Bénard convection

AU - Pandey, Ambrish

AU - Schneide, Christiane

AU - Padberg-Gehle, Kathrin

AU - Scheel, Janet D.

AU - Schumacher, Jörg

PY - 2018

Y1 - 2018

N2 - Large-scale computations in combination with new mathematical analysis tools make studies of the large-scale patterns, which are termed turbulent superstructures, in extended turbulent convection flows now accessible. Here, we report recent analyses in the Eulerian and Lagrangian frames of reference that reveal the characteristic spatial and temporal scales of the patterns as a function of Prandtl number, the dimensionless number which relates momentum to temperature diffusion in the working fluid.

AB - Large-scale computations in combination with new mathematical analysis tools make studies of the large-scale patterns, which are termed turbulent superstructures, in extended turbulent convection flows now accessible. Here, we report recent analyses in the Eulerian and Lagrangian frames of reference that reveal the characteristic spatial and temporal scales of the patterns as a function of Prandtl number, the dimensionless number which relates momentum to temperature diffusion in the working fluid.

KW - Mathematics

M3 - Article in conference proceedings

T3 - NIC Series

SP - 421

EP - 428

BT - NIC Symposium 2018

A2 - Binder, Kurt

A2 - Müller, Marcus

A2 - Trautmann, Alexander

PB - Forschungszentrum Jülich

CY - Jülich

T2 - NIC Symposium 2018

Y2 - 22 February 2018 through 23 February 2018

ER -

Links