Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques. / Fu, J.; Röntzsch, L.; Schmidt, T. et al.

in: International Journal of Hydrogen Energy, Jahrgang 37, Nr. 18, 01.09.2012, S. 13387-13392.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Fu J, Röntzsch L, Schmidt T, Tegel M, Weißgärber T, Kieback B. Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques. International Journal of Hydrogen Energy. 2012 Sep 1;37(18):13387-13392. doi: 10.1016/j.ijhydene.2012.06.009

Bibtex

@article{c997c973706c4cc483b49c02b7c31735,
title = "Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques",
abstract = "Lithium aluminum hydride (LiAlH 4) is an attractive hydrogen storage material because of its comparatively high gravimetric hydrogen storage capacity. In this study, titanium tetrachloride (TiCl 4), which is liquid at room temperature, was chosen as dopant because of its high catalytic efficiency regarding the dehydrogenation of LiAlH 4. Three low-energy doping methods (additive dispersion via ball milling at low rotation speed, magnetic stirring and magnetic stirring in ethyl ether) with different TiCl 4 concentrations were compared in order to obtain optimum dehydrogenation properties of LiAlH 4. At 80 °C, TiCl 4-doped LiAlH 4 can release up to 6.5 wt.%-H 2, which opens the way to use of exhaust heat of PEM fuel cells to trigger the hydrogen release from LiAlH 4. Highlights: LiAlH 4 was doped with TiCl 4 using three different doping techniques. Optimum dehydrogenation properties were found testing various TiCl 4 concentrations. TiCl 4-doped LiAlH4 can release up to 6.5 wt.% hydrogen. Dehydrogenation kinetics of TiCl 4-doped LiAlH 4 was studied systematically at 80 °C.",
keywords = "Energy research, Dehydrogenation, Doping methods, Hydrogen storage material, Lithium aluminum hydride, Titanium tetrachloride",
author = "J. Fu and L. R{\"o}ntzsch and T. Schmidt and M. Tegel and T. Wei{\ss}g{\"a}rber and B. Kieback",
year = "2012",
month = sep,
day = "1",
doi = "10.1016/j.ijhydene.2012.06.009",
language = "English",
volume = "37",
pages = "13387--13392",
journal = "International Journal of Hydrogen Energy",
issn = "0360-3199",
publisher = "Elsevier B.V.",
number = "18",

}

RIS

TY - JOUR

T1 - Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques

AU - Fu, J.

AU - Röntzsch, L.

AU - Schmidt, T.

AU - Tegel, M.

AU - Weißgärber, T.

AU - Kieback, B.

PY - 2012/9/1

Y1 - 2012/9/1

N2 - Lithium aluminum hydride (LiAlH 4) is an attractive hydrogen storage material because of its comparatively high gravimetric hydrogen storage capacity. In this study, titanium tetrachloride (TiCl 4), which is liquid at room temperature, was chosen as dopant because of its high catalytic efficiency regarding the dehydrogenation of LiAlH 4. Three low-energy doping methods (additive dispersion via ball milling at low rotation speed, magnetic stirring and magnetic stirring in ethyl ether) with different TiCl 4 concentrations were compared in order to obtain optimum dehydrogenation properties of LiAlH 4. At 80 °C, TiCl 4-doped LiAlH 4 can release up to 6.5 wt.%-H 2, which opens the way to use of exhaust heat of PEM fuel cells to trigger the hydrogen release from LiAlH 4. Highlights: LiAlH 4 was doped with TiCl 4 using three different doping techniques. Optimum dehydrogenation properties were found testing various TiCl 4 concentrations. TiCl 4-doped LiAlH4 can release up to 6.5 wt.% hydrogen. Dehydrogenation kinetics of TiCl 4-doped LiAlH 4 was studied systematically at 80 °C.

AB - Lithium aluminum hydride (LiAlH 4) is an attractive hydrogen storage material because of its comparatively high gravimetric hydrogen storage capacity. In this study, titanium tetrachloride (TiCl 4), which is liquid at room temperature, was chosen as dopant because of its high catalytic efficiency regarding the dehydrogenation of LiAlH 4. Three low-energy doping methods (additive dispersion via ball milling at low rotation speed, magnetic stirring and magnetic stirring in ethyl ether) with different TiCl 4 concentrations were compared in order to obtain optimum dehydrogenation properties of LiAlH 4. At 80 °C, TiCl 4-doped LiAlH 4 can release up to 6.5 wt.%-H 2, which opens the way to use of exhaust heat of PEM fuel cells to trigger the hydrogen release from LiAlH 4. Highlights: LiAlH 4 was doped with TiCl 4 using three different doping techniques. Optimum dehydrogenation properties were found testing various TiCl 4 concentrations. TiCl 4-doped LiAlH4 can release up to 6.5 wt.% hydrogen. Dehydrogenation kinetics of TiCl 4-doped LiAlH 4 was studied systematically at 80 °C.

KW - Energy research

KW - Dehydrogenation

KW - Doping methods

KW - Hydrogen storage material

KW - Lithium aluminum hydride

KW - Titanium tetrachloride

UR - http://www.scopus.com/inward/record.url?scp=84865462655&partnerID=8YFLogxK

U2 - 10.1016/j.ijhydene.2012.06.009

DO - 10.1016/j.ijhydene.2012.06.009

M3 - Journal articles

AN - SCOPUS:84865462655

VL - 37

SP - 13387

EP - 13392

JO - International Journal of Hydrogen Energy

JF - International Journal of Hydrogen Energy

SN - 0360-3199

IS - 18

ER -

DOI