Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review

Research output: Journal contributionsScientific review articlesResearch

Standard

Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review. / Ciharova, Marketa; Amarti, Khadicha; van Breda, Ward et al.
In: Biological Psychiatry, Vol. 96, No. 7, 01.10.2024, p. 519-531.

Research output: Journal contributionsScientific review articlesResearch

Harvard

Ciharova, M, Amarti, K, van Breda, W, Peng, X, Lorente-Català, R, Funk, B, Hoogendoorn, M, Koutsouleris, N, Fusar-Poli, P, Karyotaki, E, Cuijpers, P & Riper, H 2024, 'Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review', Biological Psychiatry, vol. 96, no. 7, pp. 519-531. https://doi.org/10.1016/j.biopsych.2024.06.002

APA

Ciharova, M., Amarti, K., van Breda, W., Peng, X., Lorente-Català, R., Funk, B., Hoogendoorn, M., Koutsouleris, N., Fusar-Poli, P., Karyotaki, E., Cuijpers, P., & Riper, H. (2024). Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review. Biological Psychiatry, 96(7), 519-531. https://doi.org/10.1016/j.biopsych.2024.06.002

Vancouver

Ciharova M, Amarti K, van Breda W, Peng X, Lorente-Català R, Funk B et al. Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review. Biological Psychiatry. 2024 Oct 1;96(7):519-531. Epub 2024 Jun 10. doi: 10.1016/j.biopsych.2024.06.002

Bibtex

@article{45d19a6bfd604d938d58860c1d6bb8ae,
title = "Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations: A Systematic Review",
abstract = "Research in machine learning (ML) algorithms using natural behavior (i.e., text, audio, and video data) suggests that these techniques could contribute to personalization in psychology and psychiatry. However, a systematic review of the current state of the art is missing. Moreover, individual studies often target ML experts who may overlook potential clinical implications of their findings. In a narrative accessible to mental health professionals, we present a systematic review conducted in 5 psychology and 2 computer science databases. We included 128 studies that assessed the predictive power of ML algorithms using text, audio, and/or video data in the prediction of anxiety and posttraumatic stress disorder. Most studies (n = 87) were aimed at predicting anxiety, while the remainder (n = 41) focused on posttraumatic stress disorder. They were mostly published since 2019 in computer science journals and tested algorithms using text (n = 72) as opposed to audio or video. Studies focused mainly on general populations (n = 92) and less on laboratory experiments (n = 23) or clinical populations (n = 13). Methodological quality varied, as did reported metrics of the predictive power, hampering comparison across studies. Two-thirds of studies, which focused on both disorders, reported acceptable to very good predictive power (including high-quality studies only). The results of 33 studies were uninterpretable, mainly due to missing information. Research into ML algorithms using natural behavior is in its infancy but shows potential to contribute to diagnostics of mental disorders, such as anxiety and posttraumatic stress disorder, in the future if standardization of methods, reporting of results, and research in clinical populations are improved.",
keywords = "Informatics, Anxiety, Audio, Machine Learning, Posttraumatic stress, Text, Video",
author = "Marketa Ciharova and Khadicha Amarti and {van Breda}, Ward and Xianhua Peng and Rosa Lorente-Catal{\`a} and Burkhardt Funk and Mark Hoogendoorn and Nikolaos Koutsouleris and Paolo Fusar-Poli and Eirini Karyotaki and Pim Cuijpers and Heleen Riper",
note = "Publisher Copyright: {\textcopyright} 2024 Society of Biological Psychiatry",
year = "2024",
month = oct,
day = "1",
doi = "10.1016/j.biopsych.2024.06.002",
language = "English",
volume = "96",
pages = "519--531",
journal = "Biological Psychiatry",
issn = "0006-3223",
publisher = "Elsevier Inc.",
number = "7",

}

RIS

TY - JOUR

T1 - Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations

T2 - A Systematic Review

AU - Ciharova, Marketa

AU - Amarti, Khadicha

AU - van Breda, Ward

AU - Peng, Xianhua

AU - Lorente-Català, Rosa

AU - Funk, Burkhardt

AU - Hoogendoorn, Mark

AU - Koutsouleris, Nikolaos

AU - Fusar-Poli, Paolo

AU - Karyotaki, Eirini

AU - Cuijpers, Pim

AU - Riper, Heleen

N1 - Publisher Copyright: © 2024 Society of Biological Psychiatry

PY - 2024/10/1

Y1 - 2024/10/1

N2 - Research in machine learning (ML) algorithms using natural behavior (i.e., text, audio, and video data) suggests that these techniques could contribute to personalization in psychology and psychiatry. However, a systematic review of the current state of the art is missing. Moreover, individual studies often target ML experts who may overlook potential clinical implications of their findings. In a narrative accessible to mental health professionals, we present a systematic review conducted in 5 psychology and 2 computer science databases. We included 128 studies that assessed the predictive power of ML algorithms using text, audio, and/or video data in the prediction of anxiety and posttraumatic stress disorder. Most studies (n = 87) were aimed at predicting anxiety, while the remainder (n = 41) focused on posttraumatic stress disorder. They were mostly published since 2019 in computer science journals and tested algorithms using text (n = 72) as opposed to audio or video. Studies focused mainly on general populations (n = 92) and less on laboratory experiments (n = 23) or clinical populations (n = 13). Methodological quality varied, as did reported metrics of the predictive power, hampering comparison across studies. Two-thirds of studies, which focused on both disorders, reported acceptable to very good predictive power (including high-quality studies only). The results of 33 studies were uninterpretable, mainly due to missing information. Research into ML algorithms using natural behavior is in its infancy but shows potential to contribute to diagnostics of mental disorders, such as anxiety and posttraumatic stress disorder, in the future if standardization of methods, reporting of results, and research in clinical populations are improved.

AB - Research in machine learning (ML) algorithms using natural behavior (i.e., text, audio, and video data) suggests that these techniques could contribute to personalization in psychology and psychiatry. However, a systematic review of the current state of the art is missing. Moreover, individual studies often target ML experts who may overlook potential clinical implications of their findings. In a narrative accessible to mental health professionals, we present a systematic review conducted in 5 psychology and 2 computer science databases. We included 128 studies that assessed the predictive power of ML algorithms using text, audio, and/or video data in the prediction of anxiety and posttraumatic stress disorder. Most studies (n = 87) were aimed at predicting anxiety, while the remainder (n = 41) focused on posttraumatic stress disorder. They were mostly published since 2019 in computer science journals and tested algorithms using text (n = 72) as opposed to audio or video. Studies focused mainly on general populations (n = 92) and less on laboratory experiments (n = 23) or clinical populations (n = 13). Methodological quality varied, as did reported metrics of the predictive power, hampering comparison across studies. Two-thirds of studies, which focused on both disorders, reported acceptable to very good predictive power (including high-quality studies only). The results of 33 studies were uninterpretable, mainly due to missing information. Research into ML algorithms using natural behavior is in its infancy but shows potential to contribute to diagnostics of mental disorders, such as anxiety and posttraumatic stress disorder, in the future if standardization of methods, reporting of results, and research in clinical populations are improved.

KW - Informatics

KW - Anxiety

KW - Audio

KW - Machine Learning

KW - Posttraumatic stress

KW - Text

KW - Video

UR - http://www.scopus.com/inward/record.url?scp=85199080534&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/9a11e3ab-e4a0-3289-8084-a5065ef7f98c/

U2 - 10.1016/j.biopsych.2024.06.002

DO - 10.1016/j.biopsych.2024.06.002

M3 - Scientific review articles

C2 - 38866173

VL - 96

SP - 519

EP - 531

JO - Biological Psychiatry

JF - Biological Psychiatry

SN - 0006-3223

IS - 7

ER -

Recently viewed

Publications

  1. On the utility of indirect methods for detecting faking
  2. Robust Control of Excavation Mobile Robot with Dynamic Triangulation Vision
  3. Positioning Improvement for a Laser Scanning System using cSORPD control
  4. Autonomy of Migration Despite Its Securitisation? Facing the Terms and Conditions of Biometric Rebordering
  5. Simple relay non-linear PD control for faster and high-precision motion systems with friction
  6. Pressure fault recognition and compensation with an adaptive feedforward regulator in a controlled hybrid actuator within engine applications
  7. The professional context as a predictor for response distortion in the Adaption-Innovation-Inventory – An investigation using mixture-distribution item-response theory models
  8. Phosphorus uptake from struvite is modulated by the nitrogen form applied
  9. Optimization of 3D laser scanning speed by use of combined variable step
  10. Markups and Concentration in the Context of Digitization
  11. An observer for sensorless variable valve control in camless internal combustion engines
  12. Internet-based public debate of CCS
  13. Public perceptions of CCS in context
  14. Rapid allocation of temporal attention in the Attentional Blink Paradigm
  15. Determining Lot Sizes in Production Areas
  16. Microstructure-based modeling of residual stresses in WC-12Co-sprayed coatings
  17. On the Equivalence of Transmission Problems in Nonoverlapping Domain Decomposition Methods for Quasilinear PDEs
  18. Creating a space for cooperation
  19. Trajectory tracking using MPC and a velocity observer for flat actuator systems in automotive applications
  20. Individual Scans Fusion in Virtual Knowledge Base for Navigation of Mobile Robotic Group with 3D TVS