Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. / Kröger, Dennis; Haus, Benedikt; Mercorelli, Paolo.
15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. ed. / Elena Zattoni; Silvio Simani ; Giuseppe Conte. Cham, Switzerland: Springer Nature Switzerland AG, 2022. p. 815-827 (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Kröger, D, Haus, B & Mercorelli, P 2022, Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. in E Zattoni, S Simani & G Conte (eds), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO), Springer Nature Switzerland AG, Cham, Switzerland, pp. 815-827, Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), Bologna, Italy, 21.11.19. https://doi.org/10.1007/978-3-030-85318-1_47

APA

Kröger, D., Haus, B., & Mercorelli, P. (2022). Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. In E. Zattoni, S. Simani , & G. Conte (Eds.), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019 (pp. 815-827). (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-85318-1_47

Vancouver

Kröger D, Haus B, Mercorelli P. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. In Zattoni E, Simani S, Conte G, editors, 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Cham, Switzerland: Springer Nature Switzerland AG. 2022. p. 815-827. (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). doi: 10.1007/978-3-030-85318-1_47

Bibtex

@inbook{f3b5d07e260143b6a8a89f7abbebacda,
title = "Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM",
abstract = "The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.",
keywords = "Engineering",
author = "Dennis Kr{\"o}ger and Benedikt Haus and Paolo Mercorelli",
year = "2022",
doi = "10.1007/978-3-030-85318-1_47",
language = "English",
isbn = "978-3-030-85317-4",
series = "Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)",
publisher = "Springer Nature Switzerland AG",
pages = "815--827",
editor = "Elena Zattoni and {Simani }, {Silvio } and Giuseppe Conte",
booktitle = "15th European Workshop on Advanced Control and Diagnosis (ACD 2019)",
address = "Switzerland",
note = "Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), ACD 2019 ; Conference date: 21-11-2019 Through 22-11-2019",

}

RIS

TY - CHAP

T1 - Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

AU - Kröger, Dennis

AU - Haus, Benedikt

AU - Mercorelli, Paolo

N1 - Conference code: 15

PY - 2022

Y1 - 2022

N2 - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

AB - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

KW - Engineering

UR - https://www.mendeley.com/catalogue/82dba4e5-1fac-3723-851b-2f63c0b1b950/

U2 - 10.1007/978-3-030-85318-1_47

DO - 10.1007/978-3-030-85318-1_47

M3 - Article in conference proceedings

SN - 978-3-030-85317-4

T3 - Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)

SP - 815

EP - 827

BT - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

A2 - Zattoni, Elena

A2 - Simani , Silvio

A2 - Conte, Giuseppe

PB - Springer Nature Switzerland AG

CY - Cham, Switzerland

T2 - Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

Y2 - 21 November 2019 through 22 November 2019

ER -

Recently viewed

Publications

  1. Globally asymptotic output feedback tracking of robot manipulators with actuator constraints
  2. Vision-Based Deep Learning Algorithm for Detecting Potholes
  3. Construct Objectification and De-Objectification in Organization Theory
  4. Kinematic self-calibration of non-contact five-axis measuring machine using improved genetic algorithm.
  5. Methodologies for Noise and Gross Error Detection using Univariate Signal-Based Approaches in Industrial Application
  6. Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras.
  7. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation
  8. Modelling tasks—The relation between linguistic skills, intra-mathematical skills, and context-related prior knowledge
  9. Diffusion-driven microstructure evolution in OpenCalphad
  10. Recurrence Quantification Analysis of Processes and Products of Discourse
  11. Exact and approximate inference for annotating graphs with structural SVMs
  12. Selecting and Adapting Methods for Analysis and Design in Value-Sensitive Digital Social Innovation Projects: Toward Design Principles
  13. Long-term memory predictors of adult language learning at the interface between syntactic form and meaning
  14. Interpreting Strings, Weaving Threads
  15. A model predictive control in Robotino and its implementation using ROS system
  16. Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
  17. A New Framework for Production Planning and Control to Support the Positioning in Fields of Tension Created by Opposing Logistic Objectives
  18. A Python toolbox for the numerical solution of the Maxey-Riley equation
  19. Joint entity and relation linking using EARL
  20. Human–learning–machines: introduction to a special section on how cybernetics and constructivism inspired new forms of learning
  21. A Wavelet Packet Tree Denoising Algorithm for Images of Atomic-Force Microscopy
  22. Introducing parametric uncertainty into a nonlinear friction model
  23. Finding Similar Movements in Positional Data Streams
  24. A change of values is in the air
  25. Integrating Mobile Devices into AAL-Environments using Knowledge based Assistance Systems
  26. Integrating errors into the training process
  27. Modeling Effective and Ineffective Knowledge Communication and Learning Discourses in CSCL with Hidden Markov Models
  28. Parking space management through deep learning – an approach for automated, low-cost and scalable real-time detection of parking space occupancy
  29. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM
  30. Lyapunov stability analysis to set up a PI controller for a mass flow system in case of a non-saturating input
  31. Volume of Imbalance Container Prediction using Kalman Filter and Long Short-Term Memory