Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. / Kröger, Dennis; Haus, Benedikt; Mercorelli, Paolo.
15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. ed. / Elena Zattoni; Silvio Simani ; Giuseppe Conte. Cham, Switzerland: Springer Nature Switzerland AG, 2022. p. 815-827 (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Kröger, D, Haus, B & Mercorelli, P 2022, Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. in E Zattoni, S Simani & G Conte (eds), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO), Springer Nature Switzerland AG, Cham, Switzerland, pp. 815-827, Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), Bologna, Italy, 21.11.19. https://doi.org/10.1007/978-3-030-85318-1_47

APA

Kröger, D., Haus, B., & Mercorelli, P. (2022). Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. In E. Zattoni, S. Simani , & G. Conte (Eds.), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019 (pp. 815-827). (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-85318-1_47

Vancouver

Kröger D, Haus B, Mercorelli P. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. In Zattoni E, Simani S, Conte G, editors, 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Cham, Switzerland: Springer Nature Switzerland AG. 2022. p. 815-827. (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). doi: 10.1007/978-3-030-85318-1_47

Bibtex

@inbook{f3b5d07e260143b6a8a89f7abbebacda,
title = "Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM",
abstract = "The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.",
keywords = "Engineering",
author = "Dennis Kr{\"o}ger and Benedikt Haus and Paolo Mercorelli",
year = "2022",
doi = "10.1007/978-3-030-85318-1_47",
language = "English",
isbn = "978-3-030-85317-4",
series = "Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)",
publisher = "Springer Nature Switzerland AG",
pages = "815--827",
editor = "Elena Zattoni and {Simani }, {Silvio } and Giuseppe Conte",
booktitle = "15th European Workshop on Advanced Control and Diagnosis (ACD 2019)",
address = "Switzerland",
note = "Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), ACD 2019 ; Conference date: 21-11-2019 Through 22-11-2019",

}

RIS

TY - CHAP

T1 - Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

AU - Kröger, Dennis

AU - Haus, Benedikt

AU - Mercorelli, Paolo

N1 - Conference code: 15

PY - 2022

Y1 - 2022

N2 - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

AB - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

KW - Engineering

UR - https://www.mendeley.com/catalogue/82dba4e5-1fac-3723-851b-2f63c0b1b950/

U2 - 10.1007/978-3-030-85318-1_47

DO - 10.1007/978-3-030-85318-1_47

M3 - Article in conference proceedings

SN - 978-3-030-85317-4

T3 - Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)

SP - 815

EP - 827

BT - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

A2 - Zattoni, Elena

A2 - Simani , Silvio

A2 - Conte, Giuseppe

PB - Springer Nature Switzerland AG

CY - Cham, Switzerland

T2 - Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

Y2 - 21 November 2019 through 22 November 2019

ER -

Recently viewed

Publications

  1. Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras.
  2. A Wavelet Packet Tree Denoising Algorithm for Images of Atomic-Force Microscopy
  3. A New Framework for Production Planning and Control to Support the Positioning in Fields of Tension Created by Opposing Logistic Objectives
  4. Introducing parametric uncertainty into a nonlinear friction model
  5. Volume of Imbalance Container Prediction using Kalman Filter and Long Short-Term Memory
  6. Age effects on controlling tools with sensorimotor transformations
  7. Using protochirons for three-dimensional coding of certain chemical structures.
  8. Second language learners' performance in mathematics
  9. A discrete approximate solution for the asymptotic tracking problem in affine nonlinear systems
  10. Improving students’ science text comprehension through metacognitive self-regulation when applying learning strategies
  11. A guided simulated annealing search for solving the pick-up and delivery problem with time windows and capacity constraints
  12. Text Comprehension as a Mediator in Solving Mathematical Reality-Based Tasks
  13. Analysis and Implementation of a Resistance Temperature Estimator Based on Bi-Polynomial Least Squares Method and Discrete Kalman Filter
  14. Fixed-term Contracts and Wages Revisited Using Linked Employer-Employee Data from Germany
  15. Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands
  16. 'SPREAD THE APP, NOT THE VIRUS’ – AN EXTENSIVE SEM-APPROACH TO UNDERSTAND PANDEMIC TRACING APP USAGE IN GERMANY
  17. Distributed robust Gaussian Process regression
  18. Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System
  19. Combining linked data and statistical information retrieval
  20. Inversion of fuzzy neural networks for the reduction of noise in the control loop
  21. Simulation based comparison of safety-stock calculation methods
  22. Using Wikipedia for Cross-Language Named Entity Recognition
  23. Control versus Complexity
  24. Selecting and Adapting Methods for Analysis and Design in Value-Sensitive Digital Social Innovation Projects: Toward Design Principles
  25. Convolutional Neural Networks
  26. Integrating the underlying structure of stochasticity into community ecology
  27. Cognitive load and instructionally supported learning with provided and learner-generated visualizations
  28. Globally asymptotic output feedback tracking of robot manipulators with actuator constraints
  29. Constructions and Reconstructions. The Architectural Image between Rendering and Photography
  30. Is too much help an obstacle? Effects of interactivity and cognitive style on learning with dynamic versus non-dynamic visualizations with narrative explanations
  31. Soft Optimal Computing Methods to Identify Surface Roughness in Manufacturing Using a Monotonic Regressor
  32. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics
  33. Analysis And Comparison Of Dispatching RuleBased Scheduling In Dual-Resource Constrained Shop-Floor Scenarios