Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. / Kröger, Dennis; Haus, Benedikt; Mercorelli, Paolo.
15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Hrsg. / Elena Zattoni; Silvio Simani ; Giuseppe Conte. Cham, Switzerland: Springer Nature Switzerland AG, 2022. S. 815-827 (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Kröger, D, Haus, B & Mercorelli, P 2022, Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. in E Zattoni, S Simani & G Conte (Hrsg.), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO), Springer Nature Switzerland AG, Cham, Switzerland, S. 815-827, Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), Bologna, Italien, 21.11.19. https://doi.org/10.1007/978-3-030-85318-1_47

APA

Kröger, D., Haus, B., & Mercorelli, P. (2022). Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. In E. Zattoni, S. Simani , & G. Conte (Hrsg.), 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019 (S. 815-827). (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-85318-1_47

Vancouver

Kröger D, Haus B, Mercorelli P. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM. in Zattoni E, Simani S, Conte G, Hrsg., 15th European Workshop on Advanced Control and Diagnosis (ACD 2019): Proceedings of the Workshop Held in Bologna, Italy, on November 21–22, 2019. Cham, Switzerland: Springer Nature Switzerland AG. 2022. S. 815-827. (Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)). doi: 10.1007/978-3-030-85318-1_47

Bibtex

@inbook{f3b5d07e260143b6a8a89f7abbebacda,
title = "Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM",
abstract = "The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.",
keywords = "Engineering",
author = "Dennis Kr{\"o}ger and Benedikt Haus and Paolo Mercorelli",
year = "2022",
doi = "10.1007/978-3-030-85318-1_47",
language = "English",
isbn = "978-3-030-85317-4",
series = "Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)",
publisher = "Springer Nature Switzerland AG",
pages = "815--827",
editor = "Elena Zattoni and {Simani }, {Silvio } and Giuseppe Conte",
booktitle = "15th European Workshop on Advanced Control and Diagnosis (ACD 2019)",
address = "Switzerland",
note = "Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019), ACD 2019 ; Conference date: 21-11-2019 Through 22-11-2019",

}

RIS

TY - CHAP

T1 - Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM

AU - Kröger, Dennis

AU - Haus, Benedikt

AU - Mercorelli, Paolo

N1 - Conference code: 15

PY - 2022

Y1 - 2022

N2 - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

AB - The purpose of this paper is to investigate the idea that by implementing decoupling control algorithms in Permanent Magnet Synchronous Machine (PMSM) controllers, observers like extended Kalman filters (EKFs) can achieve an advantage in computational load. In particular, the KF is designed as a combined state and parameter estimator. The approach is based on the possibility to consider individual electrical current dynamics, together with key system parameters influencing their dynamics, i.e. their inductances Ld, Lq, which is enabled by a decoupling control. Even though the decoupled dynamics are linear, the resulting augmented subsystems, including the inductances as estimation variables, are nonlinear. Furthermore, the paper shows that high-frequency inputs, caused, for example, by control chattering, can enable the EKF-based estimation of the inductances by providing for a never-ending transient phase in the case of the decoupled variant. The computational advantage is ultimately achieved by reducing the complexity of the Kalman filters by around 75%. The results are validated using computer simulations of coupled as well as decoupled control systems, also demonstrating the benefits of chattery input voltages.

KW - Engineering

UR - https://www.mendeley.com/catalogue/82dba4e5-1fac-3723-851b-2f63c0b1b950/

U2 - 10.1007/978-3-030-85318-1_47

DO - 10.1007/978-3-030-85318-1_47

M3 - Article in conference proceedings

SN - 978-3-030-85317-4

T3 - Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)

SP - 815

EP - 827

BT - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

A2 - Zattoni, Elena

A2 - Simani , Silvio

A2 - Conte, Giuseppe

PB - Springer Nature Switzerland AG

CY - Cham, Switzerland

T2 - Conference - 15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

Y2 - 21 November 2019 through 22 November 2019

ER -

DOI

Zuletzt angesehen

Projekte

  1. Robust sensor

Publikationen

  1. Promising practices for dealing with complexity in research for development
  2. Perfect anti-windup in output tracking scheme with preaction
  3. Making an Impression Through Openness
  4. Advantages and Disadvanteges of Different Text Coding Procedures for Research and Practice in a School Context
  5. Correlation between mechanical behaviour and microstructure in the Mg-Ca-Si-Sr system for degradable biomaterials based on thermodynamic calculations
  6. Proxies
  7. Agency and structure in a sociotechnical transition
  8. Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing
  9. Conceptualizing Role Development in Agile Transformations
  10. Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning
  11. Design and characterization of an EOG signal acquisition system based on the programming of saccadic movement routines
  12. GPU-accelerated meshfree computational framework for modeling the friction surfacing process
  13. Q-Adaptive Control of the nonlinear dynamics of the cantilever-sample system of an Atomic Force Microscope
  14. A PHENOMENOGRAPHICAL STUDY OF CHILDRENS’ SPATIAL THOUGHT WHILE USING MAPS IN REAL SPACES
  15. Exploring Price Elasticity to Optimize Posted Prices in e-Commerce
  16. Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current
  17. Introducing a multivariate model for predicting driving performance
  18. Evaluating entity annotators using GERBIL
  19. Managing complexity in automative production
  20. The effects of different on-line adaptive response time limits on speed and amount of learning in computer assisted instruction and intelligent tutoring
  21. Situated multiplying in primary school
  22. Topic Embeddings – A New Approach to Classify Very Short Documents Based on Predefined Topics
  23. A Lean Convolutional Neural Network for Vehicle Classification
  24. “Ideation is Fine, but Execution is Key”
  25. Restricted nonlinear approximation and singular solutions of boundary integral equations