Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Standard

Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System. / Voß, Thomas; Heger, Jens; Zein El Abdine, Mazhar.
in: Simulation Notes Europe, Jahrgang 32, Nr. 3, 09.2022, S. 169-175.

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{b447c970899c4667a271da831f475881,
title = "Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System",
abstract = "Integrating machine learning methods into the scheduling process to adjust priority rules dynamically can improve the performance of manufacturing systems. In this paper, three methods for adjusting the k-values of the ATCS sequencing rule are analyzed: neural networks, decision trees and reinforcement learning. They are evaluated in a static and a dynamic scenario. The required dataset was synthetically generated using a discrete event simulation of a flow shop environment, where product mix and system utilization were varied systematically. Across all scenarios, it is shown that all three methods can improve the performance. On par, RL and NN can reduce the mean tardiness by up to 15% and compensate for unplanned product mix changes",
keywords = "Engineering",
author = "Thomas Vo{\ss} and Jens Heger and {Zein El Abdine}, Mazhar",
note = "Special Issue ASIM SPL 2021; 19. Fachtagung {"}Simulation in Produktion und Logistik 2021{"} ; Conference date: 15-09-2021 Through 17-09-2021",
year = "2022",
month = sep,
doi = "10.11128/sne.32.tn.10617",
language = "English",
volume = "32",
pages = "169--175",
journal = "Simulation Notes Europe",
issn = "2305-9974",
publisher = "ARGESIM Verlag ",
number = "3",
url = "http://www.asim-fachtagung-spl.de/asim2021/de/index.html",

}

RIS

TY - JOUR

T1 - Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System

AU - Voß, Thomas

AU - Heger, Jens

AU - Zein El Abdine, Mazhar

N1 - Conference code: 19

PY - 2022/9

Y1 - 2022/9

N2 - Integrating machine learning methods into the scheduling process to adjust priority rules dynamically can improve the performance of manufacturing systems. In this paper, three methods for adjusting the k-values of the ATCS sequencing rule are analyzed: neural networks, decision trees and reinforcement learning. They are evaluated in a static and a dynamic scenario. The required dataset was synthetically generated using a discrete event simulation of a flow shop environment, where product mix and system utilization were varied systematically. Across all scenarios, it is shown that all three methods can improve the performance. On par, RL and NN can reduce the mean tardiness by up to 15% and compensate for unplanned product mix changes

AB - Integrating machine learning methods into the scheduling process to adjust priority rules dynamically can improve the performance of manufacturing systems. In this paper, three methods for adjusting the k-values of the ATCS sequencing rule are analyzed: neural networks, decision trees and reinforcement learning. They are evaluated in a static and a dynamic scenario. The required dataset was synthetically generated using a discrete event simulation of a flow shop environment, where product mix and system utilization were varied systematically. Across all scenarios, it is shown that all three methods can improve the performance. On par, RL and NN can reduce the mean tardiness by up to 15% and compensate for unplanned product mix changes

KW - Engineering

UR - https://www.sne-journal.org/sne-volumes/volume-32/sne-323-september-2022

UR - https://www.mendeley.com/catalogue/09fba1e1-531d-3cdb-99ab-544f873ade10/

U2 - 10.11128/sne.32.tn.10617

DO - 10.11128/sne.32.tn.10617

M3 - Conference article in journal

VL - 32

SP - 169

EP - 175

JO - Simulation Notes Europe

JF - Simulation Notes Europe

SN - 2305-9974

IS - 3

T2 - 19. Fachtagung "Simulation in Produktion und Logistik 2021"

Y2 - 15 September 2021 through 17 September 2021

ER -

Dokumente

DOI

Zuletzt angesehen

Publikationen

  1. Do sustainable institutional investors influence senior executive compensation structures according to their preferences? Empirical evidence from Europe
  2. Ablation Study of a Multimodal Gat Network on Perfect Synthetic and Real-world Data to Investigate the Influence of Language Models in Invoice Recognition
  3. A temporal analysis of how entrepreneurial goal intentions, positive fantasies, and action planning affect starting a new venture and when the effects wear off.
  4. Using structure biodegradability relationships for environmentally benign design of organosilicons – An experimental comparison of organosilicons and their carbon analogues
  5. Evaluation eines Interventionsansatzes zur Verbesserung von Motivation und motivationsförderlichem Unterrichtshandeln von Lehrkräften auf Basis der Zielorientierungstheorie
  6. “The whole is greater than the sum of its parts” – Exploring teachers’ technology readiness profiles and its relation to their emotional state during COVID-19 emergency remote teaching
  7. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda
  8. Increasing personal initiative in small business managers or owners leads to entrepreneurial success: A theory-based controlled randomized field intervention for evidence-based management
  9. Analysis of the relevance of models, influencing factors and the point in time of the forecast on the prediction quality in order-related delivery time determination using machine learning