Privacy-Preserving Localization and Social Distance Monitoring with Low-Resolution Thermal Imaging and Deep Learning
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
This study introduces a novel approach to leverage low-power, low-resolution infrared sensors for detailed people tracking in manufacturing settings. We curated a dataset including a diverse range of interactions labeled for multiple-person localization and social distance violation tasks. Our methodology uses a combination of convolutional and recurrent neural networks to interpret spatiotemporal data. We demonstrate the capability of the novel image segmentation approach for human localization where we achieve 97.5 percent image-level accuracy. Also, we highlight the importance of interpolation and convolutional kernel selection for social distance tasks where we achieve 91 percent macro-averaged accuracy in 4 class scenarios.
Originalsprache | Englisch |
---|---|
Zeitschrift | Procedia CIRP |
Jahrgang | 130 |
Seiten (von - bis) | 355-361 |
Anzahl der Seiten | 7 |
ISSN | 2212-8271 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2024 |
Veranstaltung | 57th CIRP Conference on Manufacturing Systems - CIRP CMS 2024: Speeding up manufacturing - Universität Minho, Póvoa de Varzim , Portugal Dauer: 29.05.2024 → 31.05.2024 Konferenznummer: 57 https://www.cirpcms2024.org/ |
Bibliographische Notiz
Publisher Copyright:
© 2024 The Authors.
- Ingenieurwissenschaften