Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems. / Silva, M. F.; Honorio, L. M.; Santos, M. F. et al.
2021 25th International Conference on System Theory, Control and Computing (ICSTCC): October 20 – 23, 2021 Iași, Romania, Proceedings. Hrsg. / Lavinia Ferariu; Mihaela-Hanako Matcovschi; Florina Ungureanu. Piscataway: Institute of Electrical and Electronics Engineers Inc., 2021. S. 519-524 (International Conference on System Theory, Control and Computing; Nr. 25).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Silva, MF, Honorio, LM, Santos, MF, Vidal, VF & Mercorelli, P 2021, Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems. in L Ferariu, M-H Matcovschi & F Ungureanu (Hrsg.), 2021 25th International Conference on System Theory, Control and Computing (ICSTCC): October 20 – 23, 2021 Iași, Romania, Proceedings. International Conference on System Theory, Control and Computing, Nr. 25, Institute of Electrical and Electronics Engineers Inc., Piscataway, S. 519-524, 25th International Conference on System Theory, Control and Computing, Iasi, Rumänien, 20.10.21. https://doi.org/10.1109/ICSTCC52150.2021.9607293

APA

Silva, M. F., Honorio, L. M., Santos, M. F., Vidal, V. F., & Mercorelli, P. (2021). Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems. In L. Ferariu, M.-H. Matcovschi, & F. Ungureanu (Hrsg.), 2021 25th International Conference on System Theory, Control and Computing (ICSTCC): October 20 – 23, 2021 Iași, Romania, Proceedings (S. 519-524). (International Conference on System Theory, Control and Computing; Nr. 25). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICSTCC52150.2021.9607293

Vancouver

Silva MF, Honorio LM, Santos MF, Vidal VF, Mercorelli P. Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems. in Ferariu L, Matcovschi MH, Ungureanu F, Hrsg., 2021 25th International Conference on System Theory, Control and Computing (ICSTCC): October 20 – 23, 2021 Iași, Romania, Proceedings. Piscataway: Institute of Electrical and Electronics Engineers Inc. 2021. S. 519-524. (International Conference on System Theory, Control and Computing; 25). doi: 10.1109/ICSTCC52150.2021.9607293

Bibtex

@inbook{b4df3c6b5499477797178845a7d86062,
title = "Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems",
abstract = "One of the most difficult tasks for a robotic system is to perform missions in areas with strong electromagnetic fields, such as power plants and high-voltage power lines. These disturbances affect the reading of onboard sensors and can cause the robot to become unstable or create conditions that make the task at hand an unpredictable one. To mitigate this effect, this work aims to model and validate the electromagnetic interference field around a power line to enable prediction. In this approach, the electromagnetic field of the Power Transmission Line (PTL) is considered as a function of its position, electric current and tower topology. With the prediction, it is possible to correct the disturbances measured by the sensors, which facilitates the work of robotic systems at a short distance from electromagnetic sources. To prove the model effectiveness, theoretical and practical results are demonstrated in the study of PTLs.",
keywords = "Electromagnetic interference, Robotic systems, Transmission lines, Engineering",
author = "Silva, {M. F.} and Honorio, {L. M.} and Santos, {M. F.} and Vidal, {V. F.} and P. Mercorelli",
year = "2021",
doi = "10.1109/ICSTCC52150.2021.9607293",
language = "English",
isbn = "978-1-6654-3055-5",
series = "International Conference on System Theory, Control and Computing",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "25",
pages = "519--524",
editor = "Lavinia Ferariu and Mihaela-Hanako Matcovschi and Florina Ungureanu",
booktitle = "2021 25th International Conference on System Theory, Control and Computing (ICSTCC)",
address = "United States",
note = "25th International Conference on System Theory, Control and Computing, ICSTCC 2021 ; Conference date: 20-10-2021 Through 23-10-2021",
url = "https://ieeexplore.ieee.org/xpl/conhome/9607028/proceeding",

}

RIS

TY - CHAP

T1 - Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems

AU - Silva, M. F.

AU - Honorio, L. M.

AU - Santos, M. F.

AU - Vidal, V. F.

AU - Mercorelli, P.

N1 - Conference code: 25

PY - 2021

Y1 - 2021

N2 - One of the most difficult tasks for a robotic system is to perform missions in areas with strong electromagnetic fields, such as power plants and high-voltage power lines. These disturbances affect the reading of onboard sensors and can cause the robot to become unstable or create conditions that make the task at hand an unpredictable one. To mitigate this effect, this work aims to model and validate the electromagnetic interference field around a power line to enable prediction. In this approach, the electromagnetic field of the Power Transmission Line (PTL) is considered as a function of its position, electric current and tower topology. With the prediction, it is possible to correct the disturbances measured by the sensors, which facilitates the work of robotic systems at a short distance from electromagnetic sources. To prove the model effectiveness, theoretical and practical results are demonstrated in the study of PTLs.

AB - One of the most difficult tasks for a robotic system is to perform missions in areas with strong electromagnetic fields, such as power plants and high-voltage power lines. These disturbances affect the reading of onboard sensors and can cause the robot to become unstable or create conditions that make the task at hand an unpredictable one. To mitigate this effect, this work aims to model and validate the electromagnetic interference field around a power line to enable prediction. In this approach, the electromagnetic field of the Power Transmission Line (PTL) is considered as a function of its position, electric current and tower topology. With the prediction, it is possible to correct the disturbances measured by the sensors, which facilitates the work of robotic systems at a short distance from electromagnetic sources. To prove the model effectiveness, theoretical and practical results are demonstrated in the study of PTLs.

KW - Electromagnetic interference

KW - Robotic systems

KW - Transmission lines

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85123302853&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/55037edf-bec9-3061-8924-a669dc3fe0c4/

U2 - 10.1109/ICSTCC52150.2021.9607293

DO - 10.1109/ICSTCC52150.2021.9607293

M3 - Article in conference proceedings

AN - SCOPUS:85123302853

SN - 978-1-6654-3055-5

T3 - International Conference on System Theory, Control and Computing

SP - 519

EP - 524

BT - 2021 25th International Conference on System Theory, Control and Computing (ICSTCC)

A2 - Ferariu, Lavinia

A2 - Matcovschi, Mihaela-Hanako

A2 - Ungureanu, Florina

PB - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

T2 - 25th International Conference on System Theory, Control and Computing

Y2 - 20 October 2021 through 23 October 2021

ER -

DOI

Zuletzt angesehen

Publikationen

  1. An optimal minimum phase approximating PD regulator for robust control of a throttle plate
  2. Forest structure and heterogeneity increase diversity and alter composition of host–parasitoid networks
  3. Das Konzept "Dialog" in der Werbung
  4. Applying FIDIC contracts in Jordan
  5. Distal and proximal predictors of snacking at work
  6. Model Predictive Control for Energy Optimization in Generators/Motors as Well as Converters and Inverters for Futuristic Integrated Power Networks
  7. Organizational practices for the aging workforce
  8. The effect of complacency potential on human operators’ monitoring behavior in aviation
  9. Responsible Research is also concerned with generalizability
  10. What do we know about new venture investment time patterns?
  11. Time and Income Poverty – An Interdependent Multidimensional Poverty Approach with German Time Use Diary Data
  12. Tier
  13. Learning processes for interpersonal competence development in project-based sustainability courses – insights from a comparative international study
  14. Red List of marine macroalgae of the Wadden Sea
  15. How Do AI Educators Use Open Educational Resources? A Cross-Sectoral Case Study on OER for AI Education
  16. Tree diversity effects on litter decomposition are mediated by litterfall and microbial processes
  17. Deformation and Anchoring of AA 2024-T3 rivets within thin printed circuit boards
  18. Resource use and competition between honey bees and wild bees in the Lüneburger Heath
  19. You Are What You Eat (from)?
  20. Notting Hill Gate 4 Basic
  21. Creating a trusting environment in the sharing economy
  22. Characterization of the Basic Types of Lunar Highland Breccias by Quantitative Textural Analysis
  23. Ästhetische Operationen
  24. Theories of Development of Democracy
  25. Notting Hill Gate 4 Basic
  26. The HES framework
  27. Demarcating New Borders: Transnational Migration and New Educational Governance
  28. Affect, Attachment, and Passion
  29. We have Some Calves left! Socially Accepted Alternatives to the Current Handling of Male Calves from Dairy Production

Presse / Medien

  1. Die Gut-Verdiener