A scalable approach for computing semantic relatedness using semantic web data
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Computing semantic relatedness is an essential operation for many natural language processing (NLP) tasks, such as Entity Linking (EL) and Question Answering (QA). It is still challenging to find a scalable approach to compute the semantic relatedness using Semantic Web data. Hence, we present for the first time an approach to pre-compute the semantic relatedness between the instances, relations, and classes of an ontology, such that they can be used in real-time applications.
Originalsprache | Englisch |
---|---|
Titel | 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016 |
Herausgeber | Patrice Bellot, Jacky Montmain, Sebastien Harispe, Francois Trousset, Michel Plantie, Rajendra Akerkar, Anne Laurent, Sylvie Ranwez |
Anzahl der Seiten | 9 |
Verlag | Association for Computing Machinery, Inc |
Erscheinungsdatum | 13.06.2016 |
Aufsatznummer | 20 |
ISBN (elektronisch) | 9781450340564 |
DOIs | |
Publikationsstatus | Erschienen - 13.06.2016 |
Extern publiziert | Ja |
Veranstaltung | 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016 - Nimes, Frankreich Dauer: 13.06.2016 → 15.06.2016 Konferenznummer: 6 https://dl.acm.org/doi/proceedings/10.1145/2912845 |
Bibliographische Notiz
Publisher Copyright:
© 2016 ACM.
- Informatik
- Wirtschaftsinformatik