A scalable approach for computing semantic relatedness using semantic web data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

A scalable approach for computing semantic relatedness using semantic web data. / Diefenbach, Dennis; Usbeck, Ricardo; Singh, Kamal Deep et al.
6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016. Hrsg. / Patrice Bellot; Jacky Montmain; Sebastien Harispe; Francois Trousset; Michel Plantie; Rajendra Akerkar; Anne Laurent; Sylvie Ranwez. Association for Computing Machinery, Inc, 2016. 20 (ACM International Conference Proceeding Series; Band 13-15-June-2016).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Diefenbach, D, Usbeck, R, Singh, KD & Maret, P 2016, A scalable approach for computing semantic relatedness using semantic web data. in P Bellot, J Montmain, S Harispe, F Trousset, M Plantie, R Akerkar, A Laurent & S Ranwez (Hrsg.), 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016., 20, ACM International Conference Proceeding Series, Bd. 13-15-June-2016, Association for Computing Machinery, Inc, 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016, Nimes, Frankreich, 13.06.16. https://doi.org/10.1145/2912845.2912864

APA

Diefenbach, D., Usbeck, R., Singh, K. D., & Maret, P. (2016). A scalable approach for computing semantic relatedness using semantic web data. In P. Bellot, J. Montmain, S. Harispe, F. Trousset, M. Plantie, R. Akerkar, A. Laurent, & S. Ranwez (Hrsg.), 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016 Artikel 20 (ACM International Conference Proceeding Series; Band 13-15-June-2016). Association for Computing Machinery, Inc. https://doi.org/10.1145/2912845.2912864

Vancouver

Diefenbach D, Usbeck R, Singh KD, Maret P. A scalable approach for computing semantic relatedness using semantic web data. in Bellot P, Montmain J, Harispe S, Trousset F, Plantie M, Akerkar R, Laurent A, Ranwez S, Hrsg., 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016. Association for Computing Machinery, Inc. 2016. 20. (ACM International Conference Proceeding Series). doi: 10.1145/2912845.2912864

Bibtex

@inbook{8e9835583a094af68aa578bbbb57b8e2,
title = "A scalable approach for computing semantic relatedness using semantic web data",
abstract = "Computing semantic relatedness is an essential operation for many natural language processing (NLP) tasks, such as Entity Linking (EL) and Question Answering (QA). It is still challenging to find a scalable approach to compute the semantic relatedness using Semantic Web data. Hence, we present for the first time an approach to pre-compute the semantic relatedness between the instances, relations, and classes of an ontology, such that they can be used in real-time applications.",
keywords = "Scalability, Semantic relatedness, Semantic web, Informatics, Business informatics",
author = "Dennis Diefenbach and Ricardo Usbeck and Singh, {Kamal Deep} and Pierre Maret",
note = "Publisher Copyright: {\textcopyright} 2016 ACM.; 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016, WIMS 2016 ; Conference date: 13-06-2016 Through 15-06-2016",
year = "2016",
month = jun,
day = "13",
doi = "10.1145/2912845.2912864",
language = "English",
series = "ACM International Conference Proceeding Series",
publisher = "Association for Computing Machinery, Inc",
editor = "Patrice Bellot and Jacky Montmain and Sebastien Harispe and Francois Trousset and Michel Plantie and Rajendra Akerkar and Anne Laurent and Sylvie Ranwez",
booktitle = "6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016",
address = "United States",
url = "https://dl.acm.org/doi/proceedings/10.1145/2912845",

}

RIS

TY - CHAP

T1 - A scalable approach for computing semantic relatedness using semantic web data

AU - Diefenbach, Dennis

AU - Usbeck, Ricardo

AU - Singh, Kamal Deep

AU - Maret, Pierre

N1 - Conference code: 6

PY - 2016/6/13

Y1 - 2016/6/13

N2 - Computing semantic relatedness is an essential operation for many natural language processing (NLP) tasks, such as Entity Linking (EL) and Question Answering (QA). It is still challenging to find a scalable approach to compute the semantic relatedness using Semantic Web data. Hence, we present for the first time an approach to pre-compute the semantic relatedness between the instances, relations, and classes of an ontology, such that they can be used in real-time applications.

AB - Computing semantic relatedness is an essential operation for many natural language processing (NLP) tasks, such as Entity Linking (EL) and Question Answering (QA). It is still challenging to find a scalable approach to compute the semantic relatedness using Semantic Web data. Hence, we present for the first time an approach to pre-compute the semantic relatedness between the instances, relations, and classes of an ontology, such that they can be used in real-time applications.

KW - Scalability

KW - Semantic relatedness

KW - Semantic web

KW - Informatics

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=84978532297&partnerID=8YFLogxK

U2 - 10.1145/2912845.2912864

DO - 10.1145/2912845.2912864

M3 - Article in conference proceedings

AN - SCOPUS:84978532297

T3 - ACM International Conference Proceeding Series

BT - 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016

A2 - Bellot, Patrice

A2 - Montmain, Jacky

A2 - Harispe, Sebastien

A2 - Trousset, Francois

A2 - Plantie, Michel

A2 - Akerkar, Rajendra

A2 - Laurent, Anne

A2 - Ranwez, Sylvie

PB - Association for Computing Machinery, Inc

T2 - 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016

Y2 - 13 June 2016 through 15 June 2016

ER -

DOI