Systematic study of the effect of non-uniform seal stiffness on the contact stress in flat-faced soft-seated spring operated pressure relief valves

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Authors

Spring operated pressure relief valves (SOPRVs) are essential components of technical systems. As parts of safety systems, they protect people and the environment from technological hazards. Their ability to open at a predefined pressure is considered the most important feature. The reliability of this function depends on numerous operational and design factors. In this paper, we examine the effects of design measures on the mechanical loads in seat seals of SOPRVs. In particular, we evaluate the applicability of the principle of non-uniform system stiffness in order to systematically control the mechanical loads in seat seals for an exemplary case of a flat faced soft seated SOPRV. We systematically vary design parameters and accurately estimate the contact stresses as well as the set pressure by performing non-linear finite element analyses. We focus on the quasi-static case of a closed seal, since dynamic effects of the opening and closing processes are not within the scope of this work. In our contribution, we show that the application of these design measures can significantly influence both the initial contact stresses and the set pressure at a constant spring force. In particular, the effects of the taper angle are analyzed and discussed.

Original languageEnglish
Title of host publicationASME 2018 International Mechanical Engineering Congress and Exposition : Volume 13: Design, Reliability, Safety, and Risk
Number of pages7
PublisherThe American Society of Mechanical Engineers(ASME)
Publication date09.11.2018
Article numberV013T05A044
ISBN (Electronic)978-0-7918-5218-7
DOIs
Publication statusPublished - 09.11.2018
Externally publishedYes
EventASME 2018 International Mechanical Engineering Congress and Exposition - IMECE 2018 - David L. Lawrence Convention Center, Pittsburgh, United States
Duration: 09.11.201815.11.2018
Conference number: 4

Bibliographical note

Publisher Copyright:
Copyright © 2018 ASME

DOI