Perfectly nested or significantly nested - an important difference for conservation management

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Perfectly nested or significantly nested - an important difference for conservation management. / Fischer, Jörn; Lindenmayer, David B.
In: Oikos, Vol. 109, No. 3, 01.06.2005, p. 485-494.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Fischer J, Lindenmayer DB. Perfectly nested or significantly nested - an important difference for conservation management. Oikos. 2005 Jun 1;109(3):485-494. doi: 10.1111/j.0030-1299.2005.13674.x

Bibtex

@article{856435bedf584108ae6bd70d7414b3c0,
title = "Perfectly nested or significantly nested - an important difference for conservation management",
abstract = "Assemblages are nested if species present at species-poor sites are subsets of those present at species-rich sites. In fragmented landscapes, nestedness analyses have been suggested as a means of assessing which patches are most important for biodiversity conservation. In the theoretical situation of perfect nestedness in relation to patch size, the single largest patch is disproportionally more important compared to smaller patches and will capture all species of conservation concern. However, real ecosystems are rarely perfectly nested. Here, we examined how different the implications for conservation management would be for an assemblage of birds that was highly significantly, but imperfectly nested in relation to patch size.The study focused on a fragmented landscape in southeastern Australia. Across 43 patches, 76 species of birds were recorded and classified as generalist, intermediate and sensitive species. The dataset was highly significantly nested by patch size (p=0.002). Under perfect nestedness by patch size, the single largest patch would have captured all species, and all sensitive species would have co-occurred in the largest patch. In our imperfectly nested dataset, co-occurrence patterns were substantially weaker. Usually, less than half of the sensitive species co-occurred in any given patch, and using the largest patches only, over a quarter of the study area would have been required to capture 80% of sensitive species at least once. These findings highlight there can be large qualitative differences between theoretical perfectly nested assemblages, and real imperfectly nested assemblages.Despite the outcomes of our study which showed highly significant nestedness by area, smaller patches in the system were important to complement large patches. We therefore argue that nestedness analyses need to be interpreted carefully, especially in an applied conservation context. Alternative conservation planning tools which consider the complementarity of various different patches are likely to be more informative for conservation management than nestedness analyses.",
keywords = "Biology, conservation management, fragmented landscapes, biodiversity",
author = "J{\"o}rn Fischer and Lindenmayer, {David B.}",
note = "Times Cited: 19",
year = "2005",
month = jun,
day = "1",
doi = "10.1111/j.0030-1299.2005.13674.x",
language = "English",
volume = "109",
pages = "485--494",
journal = "Oikos",
issn = "1600-0706",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "3",

}

RIS

TY - JOUR

T1 - Perfectly nested or significantly nested - an important difference for conservation management

AU - Fischer, Jörn

AU - Lindenmayer, David B.

N1 - Times Cited: 19

PY - 2005/6/1

Y1 - 2005/6/1

N2 - Assemblages are nested if species present at species-poor sites are subsets of those present at species-rich sites. In fragmented landscapes, nestedness analyses have been suggested as a means of assessing which patches are most important for biodiversity conservation. In the theoretical situation of perfect nestedness in relation to patch size, the single largest patch is disproportionally more important compared to smaller patches and will capture all species of conservation concern. However, real ecosystems are rarely perfectly nested. Here, we examined how different the implications for conservation management would be for an assemblage of birds that was highly significantly, but imperfectly nested in relation to patch size.The study focused on a fragmented landscape in southeastern Australia. Across 43 patches, 76 species of birds were recorded and classified as generalist, intermediate and sensitive species. The dataset was highly significantly nested by patch size (p=0.002). Under perfect nestedness by patch size, the single largest patch would have captured all species, and all sensitive species would have co-occurred in the largest patch. In our imperfectly nested dataset, co-occurrence patterns were substantially weaker. Usually, less than half of the sensitive species co-occurred in any given patch, and using the largest patches only, over a quarter of the study area would have been required to capture 80% of sensitive species at least once. These findings highlight there can be large qualitative differences between theoretical perfectly nested assemblages, and real imperfectly nested assemblages.Despite the outcomes of our study which showed highly significant nestedness by area, smaller patches in the system were important to complement large patches. We therefore argue that nestedness analyses need to be interpreted carefully, especially in an applied conservation context. Alternative conservation planning tools which consider the complementarity of various different patches are likely to be more informative for conservation management than nestedness analyses.

AB - Assemblages are nested if species present at species-poor sites are subsets of those present at species-rich sites. In fragmented landscapes, nestedness analyses have been suggested as a means of assessing which patches are most important for biodiversity conservation. In the theoretical situation of perfect nestedness in relation to patch size, the single largest patch is disproportionally more important compared to smaller patches and will capture all species of conservation concern. However, real ecosystems are rarely perfectly nested. Here, we examined how different the implications for conservation management would be for an assemblage of birds that was highly significantly, but imperfectly nested in relation to patch size.The study focused on a fragmented landscape in southeastern Australia. Across 43 patches, 76 species of birds were recorded and classified as generalist, intermediate and sensitive species. The dataset was highly significantly nested by patch size (p=0.002). Under perfect nestedness by patch size, the single largest patch would have captured all species, and all sensitive species would have co-occurred in the largest patch. In our imperfectly nested dataset, co-occurrence patterns were substantially weaker. Usually, less than half of the sensitive species co-occurred in any given patch, and using the largest patches only, over a quarter of the study area would have been required to capture 80% of sensitive species at least once. These findings highlight there can be large qualitative differences between theoretical perfectly nested assemblages, and real imperfectly nested assemblages.Despite the outcomes of our study which showed highly significant nestedness by area, smaller patches in the system were important to complement large patches. We therefore argue that nestedness analyses need to be interpreted carefully, especially in an applied conservation context. Alternative conservation planning tools which consider the complementarity of various different patches are likely to be more informative for conservation management than nestedness analyses.

KW - Biology

KW - conservation management

KW - fragmented landscapes

KW - biodiversity

UR - http://www.scopus.com/inward/record.url?scp=17444428957&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/2877b3fc-3d9f-317a-9441-f8f085b88848/

U2 - 10.1111/j.0030-1299.2005.13674.x

DO - 10.1111/j.0030-1299.2005.13674.x

M3 - Journal articles

VL - 109

SP - 485

EP - 494

JO - Oikos

JF - Oikos

SN - 1600-0706

IS - 3

ER -

Recently viewed

Publications

  1. Saving (in) a common world
  2. 8th challenge on question answering over linked data (QALD-8)
  3. Detection of oscillations with application in the pantograph control
  4. Multi-Professional Support
  5. Use of design methods, team leaders' goal orientation, and team effectiveness: A follow-up study in software development projects
  6. Foreword to applied data science, demo, and nectar tracks
  7. Multiple
  8. Performance of methods to select landscape metrics for modelling species richness
  9. “Circuits of Commons”: Exploring the Connections Between Economic Lives and the Commons
  10. FaQuAD
  11. Recurring patterns and blueprints of industrial symbioses as structural units for an it tool
  12. Simon Denny
  13. Disentangling trade-offs and synergies around ecosystem services with the influence network framework
  14. New developments in extrusion of profiles with variable curvatures and cross-sections
  15. Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air
  16. Robust Decoupling Control of Contact Forces in Robotic Manipulation
  17. Pathways and mechanisms for catalyzing social impact through Orchestration: Insights from an open social innovation project
  18. Hands in Focus: Sign Language Recognition Via Top-Down Attention
  19. Biodiversity and ecosystem functioning relations in European forests depend on environmental context.
  20. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities
  21. Combination of a reduced order state observer and an Extended Kalman Filter for Peltier cells
  22. Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures
  23. Do we fail to exert self-control because we lack resources or motivation? Competing theories to explain a debated phenomenon
  24. What do people do when they use the internet?
  25. Machine Learning and Data Mining for Sports Analytics
  26. Collaborative modelling for active involvement of stakeholders in urban flood risk management
  27. Environmental Shareholder Value Matrix
  28. Online-Beratung für Eltern
  29. Navigating tensions in inclusive conservation