Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current. / Adawi, Abdullah; Bouattour, Ghada; Ibbini, Mohammed et al.
Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020. Institute of Electrical and Electronics Engineers Inc., 2020. p. 156-161 9364090 (Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Adawi, A, Bouattour, G, Ibbini, M & Kanoun, O 2020, Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current. in Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020., 9364090, Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020, Institute of Electrical and Electronics Engineers Inc., pp. 156-161, 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020, Sfax, Tunisia, 20.07.20. https://doi.org/10.1109/SSD49366.2020.9364090

APA

Adawi, A., Bouattour, G., Ibbini, M., & Kanoun, O. (2020). Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current. In Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020 (pp. 156-161). Article 9364090 (Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SSD49366.2020.9364090

Vancouver

Adawi A, Bouattour G, Ibbini M, Kanoun O. Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current. In Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020. Institute of Electrical and Electronics Engineers Inc. 2020. p. 156-161. 9364090. (Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020). doi: 10.1109/SSD49366.2020.9364090

Bibtex

@inbook{385405392da94e3fbb19802d71c0e36e,
title = "Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current",
abstract = "Inductive Power Transmission (IPT) systems are widely used to charge mobile devices. In this paper, we propose a design of an IPT system circuit based on an AC-AC converter and semi-Active rectifier. This system shows a higher efficiency in comparison to diode-based rectifiers on the receiving side. In addition, it delivers a constant load current and pure sine-wave signals and has a simple implementation in comparison to inverter-based sending side circuits. The semi-Active rectifier shows a good compromise in terms of efficiency, circuit size, complexity, and controllability. A Proportional-Integral (PI) control algorithms developed for the receiving side to control the semi-Active rectifier to reach a constant load current. Simulation results validates the proposed concept performances by illustrating that the system efficiency reached more than 80% while using the semi-Active rectifier rather than about 60% using the uncontrolled rectifier.",
keywords = "Constant current charging, Constant power, Contactless charging, Energy harvesting, Inductive power Transmission (IPT), Maximum Efficiency Tracking, PI Controller, Power amplifier, Semiactive rectifier, Sensor. AC-AC converter, Wireless power transfer (WPT), Engineering",
author = "Abdullah Adawi and Ghada Bouattour and Mohammed Ibbini and Olfa Kanoun",
note = "Publisher Copyright: {\textcopyright} 2020 IEEE.; 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020 ; Conference date: 20-07-2020 Through 23-07-2020",
year = "2020",
month = jul,
day = "20",
doi = "10.1109/SSD49366.2020.9364090",
language = "English",
isbn = "978-1-7281-1081-3",
series = "Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "156--161",
booktitle = "Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020",
address = "United States",
url = "https://ieeexplore.ieee.org/xpl/conhome/9364013/proceeding",

}

RIS

TY - CHAP

T1 - Design and Control of an Inductive Power Transmission System with AC-AC Converter for a Constant Output Current

AU - Adawi, Abdullah

AU - Bouattour, Ghada

AU - Ibbini, Mohammed

AU - Kanoun, Olfa

N1 - Publisher Copyright: © 2020 IEEE.

PY - 2020/7/20

Y1 - 2020/7/20

N2 - Inductive Power Transmission (IPT) systems are widely used to charge mobile devices. In this paper, we propose a design of an IPT system circuit based on an AC-AC converter and semi-Active rectifier. This system shows a higher efficiency in comparison to diode-based rectifiers on the receiving side. In addition, it delivers a constant load current and pure sine-wave signals and has a simple implementation in comparison to inverter-based sending side circuits. The semi-Active rectifier shows a good compromise in terms of efficiency, circuit size, complexity, and controllability. A Proportional-Integral (PI) control algorithms developed for the receiving side to control the semi-Active rectifier to reach a constant load current. Simulation results validates the proposed concept performances by illustrating that the system efficiency reached more than 80% while using the semi-Active rectifier rather than about 60% using the uncontrolled rectifier.

AB - Inductive Power Transmission (IPT) systems are widely used to charge mobile devices. In this paper, we propose a design of an IPT system circuit based on an AC-AC converter and semi-Active rectifier. This system shows a higher efficiency in comparison to diode-based rectifiers on the receiving side. In addition, it delivers a constant load current and pure sine-wave signals and has a simple implementation in comparison to inverter-based sending side circuits. The semi-Active rectifier shows a good compromise in terms of efficiency, circuit size, complexity, and controllability. A Proportional-Integral (PI) control algorithms developed for the receiving side to control the semi-Active rectifier to reach a constant load current. Simulation results validates the proposed concept performances by illustrating that the system efficiency reached more than 80% while using the semi-Active rectifier rather than about 60% using the uncontrolled rectifier.

KW - Constant current charging

KW - Constant power

KW - Contactless charging

KW - Energy harvesting

KW - Inductive power Transmission (IPT)

KW - Maximum Efficiency Tracking

KW - PI Controller

KW - Power amplifier

KW - Semiactive rectifier

KW - Sensor. AC-AC converter

KW - Wireless power transfer (WPT)

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85102992804&partnerID=8YFLogxK

U2 - 10.1109/SSD49366.2020.9364090

DO - 10.1109/SSD49366.2020.9364090

M3 - Article in conference proceedings

AN - SCOPUS:85102992804

SN - 978-1-7281-1081-3

T3 - Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020

SP - 156

EP - 161

BT - Proceedings of the 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 17th International Multi-Conference on Systems, Signals and Devices, SSD 2020

Y2 - 20 July 2020 through 23 July 2020

ER -

Recently viewed

Publications

  1. Conjunctive cohesion in English language EU documents - A corpus-based analysis and its implications
  2. Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils
  3. Dimensions of digital transformation in the context of modern agriculture
  4. Individual differences and cognitive load theory
  5. Do consumers prefer pasture-raised dual-purpose cattle when considering meat products? A hypothetical discrete choice experiment for the case of minced beef
  6. Integration of Sustainability into Universities - Good Practices and Benchmarking for Integration
  7. Das Conservation Reserve Program
  8. Zur internen Repräsentation von Umweltgeräuschen
  9. Ecosystem services from forest and farmland
  10. Collective emotions in institutional creation work
  11. The balanced scorecard’s missing link to compensation
  12. Controller als Partner im Nachhaltigkeits-Management
  13. Uncovered workers in plants covered by collective bargaining: Who are they and how do they fare?
  14. Von der Beharrlichkeit der Ungleichheit
  15. Integration trotz Segregation
  16. Handelsgesetzbuch
  17. Emotional intelligence
  18. "Wer sieht was?" und "Wer berührt wen?"
  19. Individual-tree radial growth in a subtropical broad-leaved forest
  20. Ungleich mächtig
  21. DAS STATISCHE SFB 3-MIKROSIMULATIONSMODELL - KONZEPTION UND REALISIERUNG MIT EINEM RELATIONALEN DATENBANKSYSTEM.
  22. Biotechnology and law
  23. Mental accounting mechanisms in energy decision-making and behaviour
  24. The Timing of Daily Demand for Goods and Services - Microsimulation Policy Results of an Aging Society, Increasing Labour Market Flexibility, and Extended Public Childcare in Germany
  25. On the effects of redistribution on growth and entrepreneurial risk-taking
  26. Digital naturalism
  27. Corrigendum to: Pathways to Implementation: Evidence on How Participation in Environmental Governance Impacts on Environmental Outcomes
  28. Ágnes Lesznyák: Communication in English as an International Lingua Franca. An Exploratory Case Study
  29. The Instrument as Medium
  30. Healthy Principals - Healthy Schools?