Transductive support vector machines for structured variables
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 24th international conference on Machine learning |
Anzahl der Seiten | 8 |
Erscheinungsort | New York |
Verlag | Association for Computing Machinery, Inc |
Erscheinungsdatum | 2007 |
Seiten | 1183-1190 |
ISBN (Print) | 978-1-59593-793-3 |
DOIs | |
Publikationsstatus | Erschienen - 2007 |
Extern publiziert | Ja |
Veranstaltung | ACM International Conference Proceeding Series - AICPS 2007 - Corvallis, USA / Vereinigte Staaten Dauer: 20.06.2007 → 24.06.2007 |
- Informatik
- Wirtschaftsinformatik