Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. / Willenbacher, Martina; Scholten, Jonas; Wohlgemuth, Volker.
in: Sustainability, Jahrgang 13, Nr. 12, 6800, 16.06.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Willenbacher M, Scholten J, Wohlgemuth V. Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. Sustainability. 2021 Jun 16;13(12):6800. doi: 10.3390/su13126800

Bibtex

@article{5a0411c4a0fe4548960e96150205827c,
title = "Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME",
abstract = "In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs{\textquoteright} plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry{\textquoteright}s environmental impact and increase efficiency.",
keywords = "Artificial intelligence, Energy saving, Machine learning, Reduction of emissions and material, Sustainability, Sustainability sciences, Communication",
author = "Martina Willenbacher and Jonas Scholten and Volker Wohlgemuth",
note = "Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.",
year = "2021",
month = jun,
day = "16",
doi = "10.3390/su13126800",
language = "English",
volume = "13",
journal = "Sustainability",
issn = "2071-1050",
publisher = "MDPI AG",
number = "12",

}

RIS

TY - JOUR

T1 - Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

AU - Willenbacher, Martina

AU - Scholten, Jonas

AU - Wohlgemuth, Volker

N1 - Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.

PY - 2021/6/16

Y1 - 2021/6/16

N2 - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

AB - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

KW - Artificial intelligence

KW - Energy saving

KW - Machine learning

KW - Reduction of emissions and material

KW - Sustainability

KW - Sustainability sciences, Communication

UR - http://www.scopus.com/inward/record.url?scp=85108887610&partnerID=8YFLogxK

U2 - 10.3390/su13126800

DO - 10.3390/su13126800

M3 - Journal articles

AN - SCOPUS:85108887610

VL - 13

JO - Sustainability

JF - Sustainability

SN - 2071-1050

IS - 12

M1 - 6800

ER -

Dokumente

DOI

Zuletzt angesehen

Publikationen

  1. Collective intentionality in entrepreneurship-as-practice
  2. Phasing out and in
  3. Gender in die Bildung !
  4. Morphosen – Morphine
  5. A holistic approach to expatriate management
  6. Globales Lernen in informellen Settings an Hochschulen
  7. Moving forward with digital badges in education
  8. Relative inequality and poverty in Germany and the United States using alternative equivalence scales
  9. Umweltschutz-Audits für Krankenhäuser
  10. Ende des Sozialen? / End of the Social?
  11. The influence of visual texture on perceiving the location of auditory events
  12. Die vertrackte Urteilsform
  13. The rise and fall of GMOs in politics
  14. Experimental and in silico assessment of fate and effects of the antipsychotic drug quetiapine and its bio- and phototransformation products in aquatic environments
  15. Firm size, firm age and job duration
  16. Professionalising teachers for inquiry-based science education - challenges and limits
  17. Local perceptions as a guide for the sustainable management of natural resources
  18. Biorefineries in Germany
  19. Hospital Effluents as a Source for Platinum in the Environment
  20. Climate change and environmental hazards related to shipping
  21. Crop diversity effects on temporal agricultural production stability across European regions
  22. Fast Car
  23. Habitat continuity matters
  24. The artificial intelligence of sense.
  25. Mathematik für Wirtschaftsinformatiker und Informatiker
  26. Fortsetzung Kunstvermittlung
  27. Re-Collection
  28. A Note on Risk Aversion and Labour Market Outcomes
  29. Uneven distribution of phytodiversity in NE German dry grassland communities
  30. § 328: Beschränkung der Rechte
  31. Workshop über "Hypersystem-Konzepte in Medien und kultureller Produktion"
  32. Fly
  33. Nonadherence in outpatient thrombosis prophylaxis with low molecular weight heparins after major orthopaedic surgery
  34. From Basic Ecology to the Challenges of Modern Society
  35. Managing sustainability communication on campus:
  36. Effects of free-air CO 2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation
  37. Environmental impacts of droughts: key challenges.
  38. Macroeconomic shocks and banks’ foreign assets
  39. Beamtenrechtliche Kontinuität oder Wechsel bei einer politischen Wende