Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. / Willenbacher, Martina; Scholten, Jonas; Wohlgemuth, Volker.
in: Sustainability, Jahrgang 13, Nr. 12, 6800, 16.06.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Willenbacher M, Scholten J, Wohlgemuth V. Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. Sustainability. 2021 Jun 16;13(12):6800. doi: 10.3390/su13126800

Bibtex

@article{5a0411c4a0fe4548960e96150205827c,
title = "Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME",
abstract = "In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs{\textquoteright} plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry{\textquoteright}s environmental impact and increase efficiency.",
keywords = "Artificial intelligence, Energy saving, Machine learning, Reduction of emissions and material, Sustainability, Sustainability sciences, Communication",
author = "Martina Willenbacher and Jonas Scholten and Volker Wohlgemuth",
note = "Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.",
year = "2021",
month = jun,
day = "16",
doi = "10.3390/su13126800",
language = "English",
volume = "13",
journal = "Sustainability",
issn = "2071-1050",
publisher = "MDPI AG",
number = "12",

}

RIS

TY - JOUR

T1 - Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

AU - Willenbacher, Martina

AU - Scholten, Jonas

AU - Wohlgemuth, Volker

N1 - Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.

PY - 2021/6/16

Y1 - 2021/6/16

N2 - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

AB - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

KW - Artificial intelligence

KW - Energy saving

KW - Machine learning

KW - Reduction of emissions and material

KW - Sustainability

KW - Sustainability sciences, Communication

UR - http://www.scopus.com/inward/record.url?scp=85108887610&partnerID=8YFLogxK

U2 - 10.3390/su13126800

DO - 10.3390/su13126800

M3 - Journal articles

AN - SCOPUS:85108887610

VL - 13

JO - Sustainability

JF - Sustainability

SN - 2071-1050

IS - 12

M1 - 6800

ER -

Dokumente

DOI

Zuletzt angesehen

Aktivitäten

  1. Does participation benefit the environment? Insights from a meta analysis of 259 cases of public environmental decision-making
  2. Künstlerische Forschung an Hochschulen: Aushandlungen zwischen Theorie und Praxis und Modell einer performativen Wissenspraxis
  3. Workshop zur Konstituierung des Instituts für transdisziplinäre Sozialwissenschaft der Pädagogische Hochschule Karlsruhe -2013
  4. Wissens-und Forschungspolitiken in den Künsten –Die Institutionalisierung von künstlerischer Forschung im deutschsprachigen Raum
  5. Harnessing Competition, Protecting Solidarity: A Comparison of Health Care Markets in Germany, Great Britain, and the United States
  6. Critical Artistic Interventions in Urban Contexts – The Intrinsic Logic or Spirit of Cities and Its Influence on Critical Artists
  7. Von Kollektiven und Einzelkämpfer:innen – Zu den Auswirkungen der Ökonomisierung auf Akteur:innen stationärer Kinder- und Jugendhilfe
  8. “You wanna be on top?” – (Critical) Findings of a Transcultural Television Analysis of America's Next Top Model and Germany's next Topmodel
  9. Presentation of the paper entitled "Soft Optimal Computing to Identify Surface Roughness in Manufacturing using a Monotonic Regressor"
  10. „Laudatio für Richard Sennett“. am 3.7.2013, an der Leuphana Universität, anlässlich der Verleihung der Ehrendoktorwürde an Richard Sennett
  11. Academic Committee of the China’s Research Center for Economic Transition an der Beijing University of Technology (Externe Organisation)
  12. Markenkonzept Weserbergland Imageanalyse - Positionierung - Marketing- und Kommunikationsmittelanalyse - Aufgabenteilung und Organisation.
  13. Stretching, shrinking, shape-shifting: a processual and communication-centred perspective on the elasticity and boundedness of organization
  14. Developing Strategies Against the Risks of Severe Storm Surges: Opportunities for the Integration of Different Stakeholder Perspectives
  15. Genetic markers and climate niche models indicate glacial refugia for the flightless ground beetle Carabus sylvestris north of the Alps
  16. “Take Things Easy First” or “Get Straight to The Point”? The Order of Issue Packages in Negotiation and Its Effect on Dyadic Economic Outcomes.
  17. (Mündliche) Interaktion von Englischlernenden im Rahmen eines Englischsprachigen Escape Games (Jgst. 10): Eine triangulative Mixed-Method Studie.
  18. 'Regionale Bildungsnetzwerke' in 'Lernenden Regionen': Pädagogische Raummetaphorik in aktuellen Slogans der Bildungspolitik und Bildungsplanung

Publikationen

  1. Produktive Funktionen von Kollaps und Zerstörung für gesellschaftliche Transformationsprozesse in Richtung Nachhaltigkeit
  2. Towards sustainable land uses within the Elbe river biosphere reserve in Lower Saxony, Germany by means of TerraSAR-X images
  3. Handlungsmöglichkeiten zur Minderung des Eintrags von Humanarzneimitteln und ihren Rückständen in das Roh- und Trinkwasser
  4. Impulsando estrategias colectivas ciencia-gestión-sociedad para conservar el hábitat de Ziziphus lotus (Hábitat Prioritario 5220)
  5. Zusammenhänge und Kinetik biotischer und abiotischer Eisenoxidation bei der Brunnenverockerung und Ansätze zur Modellierung
  6. Der Einfluss der Zweitsprache auf den Fremdensprachenerwerb am Beispiel des Russischen bei weißrussischen Deutschlernenden
  7. Untersuchungen zur Bewertung des Adsorptionsverhaltens heterocyclischer PAK auf Aktivkohle in teeölbelasteten Grundwässern
  8. Handbuch interkulturelle Kommunikation und Kooperation, Bd. 1, Grundlagen und Praxisfelder, mit 14 Tabellen, Alexander Thomas ... (Hg.)
  9. Human–learning–machines: introduction to a special section on how cybernetics and constructivism inspired new forms of learning
  10. The Video Game Industry: Formation, Present State, and Future, Peter Zackariasson and Timothy Wilson (eds) (2012) New York: Routledge
  11. Use of design methods, team leaders' goal orientation, and team effectiveness: A follow-up study in software development projects
  12. Fostering preservice teachers’ noticing with structured video feedback: Results of an online- and video-based intervention study
  13. Mediatisierte Politikgestaltung? Medien, Expertise und politische Entscheidungsprozesse in wissenschaftsbasierten Themenfeldern
  14. Die Rolle von Unternehmensdialogen im gesellschaftlichen Diskurs über umstrittene Technikentwicklungen: Der „InfoDialog Fracking“
  15. Lernaufgaben zum Interkulturellen Lernen im Spanischunterricht: der deutsch-kolumbianische Film ‚Dr. Alemán’ in der Sekundarstufe II
  16. Integrative Bewertung der Auswirkungen touristischer Nutzungen auf die Bereitstellung der Ecosystem Services auf der Insel Sylt
  17. Optimal regulation for dynamic hybrid systems based on dynamic programming in the case of an intelligent vehicle drive assistant
  18. Subjektive Theorien und biographische Erfahrungen im Professionalisierungsprozess von Lehrkräften – am Beispiel von Umweltbildung
  19. Reducing the peaking phenomenon in Luenberger observers in presence of quasi-static disturbances for linear time invariant systems
  20. Dialogorientierte Nachhaltigkeitsberichterstattung von Hochschulen : eine Untersuchung am Beispiel der Leuphana-Universität Lüneburg
  21. Videobasierte Professionalisierung von angehenden Lehrkräften für die Gestaltung inklusiven naturwissenschaftlichen Sachunterrichts
  22. What influences environmental entrepreneurship? A multilevel analysis of the determinants of entrepreneurs’ environmental orientation
  23. Orientierende Untersuchungen von NSO-Heterocyclen in niedersächsischen Oberflächengewässern – Betrachtung von Sediment und Wasserphase
  24. Patrick Glockner-Pilz und Patrick S. Föhl (Hrsg.): Handbuch Kulturpublikum. Forschungsfragen und Befunde. Wiesbaden (Springer) 2016, 655 Seiten.
  25. Partitioning Behavior of Per- and Polyfluoroalkyl Compounds between Pore Water and Sediment in Two Sediment Cores from Tokyo Bay, Japan
  26. Voyeurism? Autobiographies by Children of the Perpetrators. Niklas Frank's: Der Vater. Eine Abrechnung (1987), and Meine deutsche Mutter (2005)
  27. Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products
  28. Permeable Reactive Barriers (PRBs) for Ground Water Remediation at Contaminated Former Manufactured Gasworks Plants (MGPs) and Related Sites
  29. Effekte unterschiedlicher Kollaborationsskripte in chatbasiertem Computer-Supported Collaborative Learning am Beispiel von Lernprotokollen