Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. / Willenbacher, Martina; Scholten, Jonas; Wohlgemuth, Volker.
In: Sustainability, Vol. 13, No. 12, 6800, 16.06.2021.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Willenbacher M, Scholten J, Wohlgemuth V. Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME. Sustainability. 2021 Jun 16;13(12):6800. doi: 10.3390/su13126800

Bibtex

@article{5a0411c4a0fe4548960e96150205827c,
title = "Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME",
abstract = "In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs{\textquoteright} plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry{\textquoteright}s environmental impact and increase efficiency.",
keywords = "Artificial intelligence, Energy saving, Machine learning, Reduction of emissions and material, Sustainability, Sustainability sciences, Communication",
author = "Martina Willenbacher and Jonas Scholten and Volker Wohlgemuth",
note = "Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.",
year = "2021",
month = jun,
day = "16",
doi = "10.3390/su13126800",
language = "English",
volume = "13",
journal = "Sustainability",
issn = "2071-1050",
publisher = "MDPI AG",
number = "12",

}

RIS

TY - JOUR

T1 - Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME

AU - Willenbacher, Martina

AU - Scholten, Jonas

AU - Wohlgemuth, Volker

N1 - Funding: In cooperation with Novapax Kunststofftechnik Steiner GmbH & Co. KG, the University of Applied Sciences Berlin is working on the implementation of a prototype in the Nova [26] research project to monitor and optimize waste minimization and energy savings in an SME in the plastics industry using machine learning. This research was funded by Deutsche Bundesstiftung Umwelt, grant number 34589/10.

PY - 2021/6/16

Y1 - 2021/6/16

N2 - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

AB - In manufacturing companies, especially in SMEs, the optimization of processes in terms of resource consumption, waste minimization, and pollutant emissions is becoming increasingly important. Another important driver is digitalization and the associated increase in the volume of data. These data, from a multitude of devices and systems, offer enormous potential, which increases the need for intelligent, dynamic analysis models even in smaller companies. This article presents the results of an investigation into whether and to what extent machine learning processes can contribute to optimizing energy consumption and reducing incorrectly produced plastic parts in plastic processing SMEs. For this purpose, the machine data were recorded in a plastics-producing company for the automotive industry and analyzed with regard to the material and energy flows. Machine learning methods were used to train these data in order to uncover optimization potential. Another problem that was addressed in the project was the analysis of manufacturing processes characterized by strong non-linearities and time-invariant behavior with Big Data methods and self-learning controls. Machine learning is suitable for this if sufficient training data are available. Due to the high material throughput in the production of the SMEs’ plastic parts, these requirements for the development of suitable learning methods were met. In response to the increasing importance of current information technologies in industrial production processes, the project aimed to use these technologies for sustainable digitalization in order to reduce the industry’s environmental impact and increase efficiency.

KW - Artificial intelligence

KW - Energy saving

KW - Machine learning

KW - Reduction of emissions and material

KW - Sustainability

KW - Sustainability sciences, Communication

UR - http://www.scopus.com/inward/record.url?scp=85108887610&partnerID=8YFLogxK

U2 - 10.3390/su13126800

DO - 10.3390/su13126800

M3 - Journal articles

AN - SCOPUS:85108887610

VL - 13

JO - Sustainability

JF - Sustainability

SN - 2071-1050

IS - 12

M1 - 6800

ER -

Documents

DOI

Recently viewed

Activities

  1. Mentale Kontrastierung fördert Anstrengung durch Transfer von Energetisierung [Mental Contrasting and Transfer of Energization]
  2. Selbstregulation im Alltag und spontane mentale Kontrastierung [Self-regulation in every-day life an spontaneous mental contrasting]
  3. Formaldehydbelastungen mit dem Arduino untersuchen: Eine Unterrichts- einheit mit forschendem Lernen und Wissenschaftskommunikation
  4. Fachinhaltliches Lernen beim offenen Experimentieren: Ergebnisse der Erprobung einer Lernumgebung zum Thema „Dem Zucker auf der Spur“
  5. Geben Plattformen CrowdworkerInnen eine Stimme? Eine explorative Studie zur CrowdworkerInnen-Partizipation auf Crowdsourcing-Plattformen
  6. Does Frontal Residence Help Larval Fish ?: Growth and abundance of larval dab, Limanda limanda, within a developing frontal system in the North Sea
  7. Philosophieren mit Kindern im inklusiven Sachunterricht: Chancen, Herausforderungen und Perspektiven für die Professionalisierung von Lehrkräften
  8. Philosophieren mit Kindern im inklusiven Sachunterricht: Chancen, Herausforderungen und Perspektiven für die Professionalisierung von Lehrkräften
  9. Control transfers and remediation across the Upper Rhine. Scientific and technical conference in the framework of the Science Week Upper Rhine 2012
  10. Fachlichkeit als antiquierter Anspruch? Unterricht gedacht als Bewältigung von Herausforderung im Sinne einer Bildung für nachhaltige Entwicklung "Sache - Dinge - Aufgaben?"
  11. Naturwissenschaftliche Bildung für eine nachhaltige Entwicklung, Modul 2 in der Fortbildungsreihe Das Leben gestalten lernen: Bildung für nachhaltige Entwicklung in der Schule 1.-6. Klasse
  12. Überzeugungen (beliefs) von Lehrkräften zum Philosophieren mit Kindern im inklusiven Sachunterricht: Chancen, Herausforderungen und Perspektiven für die Professionalisierung von Lehrkräften
  13. Tagung „Alltag in den Medien – Medien im Alltag“ der Fachgruppe „Medien, Öffentlichkeit und Geschlecht“ in der DGPuK in Kooperation mit dem Lüneburger Forschungszentrum für Medienkultur und Mediensozialisation

Publications

  1. Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI-) by OH radicals in aqueous medium
  2. Woody vegetation of a Peruvian tropical dry forest along a climatic gradient depends more on soil than annual precipitation
  3. Mirrored piezo servo hydraulic actuators for use in camless combustion engines and its Control with mirrored inputs and MPC
  4. Analysis of polychlorinated biphenyl (PCB)-induced modification of protein expression in primary hepatocytes from harbour seals
  5. Freilandforschung im Unterricht - Erforschung ökologischer Grundprinzipien am Beispiel von Laufkäfern verschiedener Lebensräume
  6. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances
  7. “Nationals” at Forty: From an Undefined UNCLOS Term to Due Diligence Obligations on the State of Nationality to Combat IUU Fishing
  8. Sprachliche Heterogenität im Mathematikunterricht: Eine Analyse von Schülerinnen- und Schülertexten unterschiedlicher Leistungsgruppen
  9. A simplified method for determination of pentachlorophenol and hexachlorobenzene in soil contaminated by industrial chemical residues
  10. Eva-Prim - Evaluation im Primarbereich: Sprachförderung in alltäglichen und fachlichen Kontexten im Rahmen der Bund-Länder-Initiative BiSS.
  11. Nachhaltige Entwicklung durch gesellschaftliche Partizipation und Kooperation? – eine kritische Revision zentraler Theorien und Konzepte
  12. Zur Anrechnung von außerhochschulisch erworbenen Kompetenzen und zu deren Zusammenspiel mit sozialen Hierarchien im universitären Raum
  13. Relationale Sozialtheorie und die Materialität des Sozialen 'Kontaktmedien' als Vermittlungsinstanz zwischen Infrastruktur und Lebenswelt
  14. Corporate Sustainability Committees, Chief Sustainability Officers and Environmental Performance – Empirical evidence from European firms
  15. Heike Drygalla: Entwicklung demokratischer Einstellungen ostdeutscher Lehrer und ihre Relevanz für Schule und Studium. Berlin (Köster) 2005
  16. Sprachliche Ausdrucksfähigkeit in Mathematik – eine Ratingskala zur Messung der schriftsprachlichen Kompetenzen von Dritt- und Viertklässlern
  17. A Fictional Risk Narrative and Its Potential for Social Resonance: Reception of Barbara Kingsolver’s Flight Behavior in Reviews and Reading Groups
  18. The influence of sustainability knowledge and attitude on sustainable intention and behaviour of Malaysian and Indonesian undergraduate students
  19. Use of lignins from sugarcane bagasse for assembling microparticles loaded with Azadirachta indica extracts for use as neem-based organic insecticides
  20. Identification of floodplain contamination hot spots by reconstructing Elbe river pollution load history and high flood sediment distribution during inundation.
  21. Nachhaltigkeitsmanagement im Wandel der Zeit: Vom (gestrigen) betrieblichen Umweltschutz zur angestrebten (zukünftigen) unternehmerischen Nachhaltigkeitstransformation
  22. Relationen der Auflösung sind Relationen der Konstituierung – zur Individuation und zum Verhältnis von Transindividuellem und Interindividuellem nach Gilbert Simondon
  23. Wolfgang Sander: Politik entdecken - Freiheit leben: Didaktische Grundlagen politischer Bildung. 2., vollst. überarbeitete und erweit. Auflage, Wochenschau Verlag: Schwalbach/Ts. 2007
  24. Triphenylzinn in Gewässern Niedersachsens – Betrachtung der Kompartimente Wasser, Schwebstoff, Sediment und aquatische Organismen – sowie ein Vergleich zu Butylzinnverbindungen
  25. Emily, Herring, Kevin Matthew, Jones, Konstantin, Kiprijanov, Laura, Sellers. The past, present, and future of integrated history and philosophy of science. London, England: Routledge, 2019.