Kalman Filter for Predictive Maintenance and Anomaly Detection
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
There are various strategies in optimization of anomaly detection problem on sensor data. This paper describes a Gaussian Mixture Model (GMM) and Kalman filter to detect outliers within the sensor data of wire bonding. With limitation on data samples and high dimensional parameters, Principal Component Analysis (PCA) helped to reduce dimensionality without losing important information. The Expectation-Maximization algorithm for estimating Gaussian distribution parameters of GMM provided us a clustering model to fit our data. A weighted distance from the cluster center in the employed GMM model is applied to tune noise variances on measurement errors. The proposed method is validated using real measurements in the context of a manufacturing system.
Originalsprache | Englisch |
---|---|
Titel | 22nd International Carpathian Control Conference, ICCC 2021 |
Anzahl der Seiten | 6 |
Erscheinungsort | Piscataway |
Verlag | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Erscheinungsdatum | 31.05.2021 |
Aufsatznummer | 9454654 |
ISBN (Print) | 978-1-7281-8610-8 |
ISBN (elektronisch) | 978-1-7281-8609-2 |
DOIs | |
Publikationsstatus | Erschienen - 31.05.2021 |
Veranstaltung | 22nd International Carpathian Control Conference, ICCC 2021 - Online, Virtual, Velke Karlovice, Tschechische Republik Dauer: 31.05.2021 → 01.06.2021 Konferenznummer: 22 http://www.icc-conf.cz/conference/iccc2021/ |
- Ingenieurwissenschaften
Fachgebiete
Zugehörige Aktivitäten
22nd International Carpathian Control Conference, ICCC 2021
Aktivität: Wissenschaftliche und künstlerische Veranstaltungen › Konferenzen › Forschung