Predicting the future performance of soccer players
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
We propose a multitask, regression-based approach for predicting future performances of soccer players. The multitask approach allows us to simultaneously learn individual player models as offsets to a general model. We devise multitask variants of ridge regression and ε-support vector regression. Together with a hashed joint feature space, the generalized models can be optimized using standard techniques. Relevant features for the prediction are identified by a modified recursive feature elimination strategy. We report on extensive empirical results using real data from the German Bundesliga.
| Originalsprache | Englisch |
|---|---|
| Zeitschrift | Statistical Analysis and Data Mining |
| Jahrgang | 9 |
| Ausgabenummer | 5 |
| Seiten (von - bis) | 373-382 |
| Anzahl der Seiten | 10 |
| ISSN | 1932-1864 |
| DOIs | |
| Publikationsstatus | Erschienen - 01.10.2016 |
- Ingenieurwissenschaften
Fachgebiete
- Statistik, Wahrscheinlichkeit und Ungewissheit
- Statistik und Wahrscheinlichkeit
