Predicting the future performance of soccer players
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
We propose a multitask, regression-based approach for predicting future performances of soccer players. The multitask approach allows us to simultaneously learn individual player models as offsets to a general model. We devise multitask variants of ridge regression and ε-support vector regression. Together with a hashed joint feature space, the generalized models can be optimized using standard techniques. Relevant features for the prediction are identified by a modified recursive feature elimination strategy. We report on extensive empirical results using real data from the German Bundesliga.
| Originalsprache | Englisch | 
|---|---|
| Zeitschrift | Statistical Analysis and Data Mining | 
| Jahrgang | 9 | 
| Ausgabenummer | 5 | 
| Seiten (von - bis) | 373-382 | 
| Anzahl der Seiten | 10 | 
| ISSN | 1932-1864 | 
| DOIs | |
| Publikationsstatus | Erschienen - 01.10.2016 | 
- Ingenieurwissenschaften
 
Fachgebiete
- Statistik, Wahrscheinlichkeit und Ungewissheit
 - Statistik und Wahrscheinlichkeit
 
