Factored MDPs for detecting topics of user sessions
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Recommender systems aim to capture interests of users to provide tailored recommendations. User interests are however often unique and depend on many unobservable factors including a user's mood and the local weather. We take a contextual session-based approach and propose a sequential framework using factored Markov decision processes (fMDPs) to detect the user's goal (the topic) of a session. We show that an independence assumption on the attributes of items leads to a set of independent models that can be optimised efficiently. Our approach results in interpretable topics that can be effectively turned into recommendations. Empirical results on a real world click log from a large e-commerce company exhibit highly accurate topic prediction rates of about 90%. Translating our approach into a topic-driven recommender system outperforms several baseline competitors.
| Originalsprache | Englisch | 
|---|---|
| Titel | RecSys 2014 - Proceedings of the 8th ACM Conference on Recommender Systems | 
| Anzahl der Seiten | 8 | 
| Verlag | Association for Computing Machinery, Inc | 
| Erscheinungsdatum | 06.10.2014 | 
| Seiten | 33-40 | 
| ISBN (Print) | 978-1-4503-2668-1 | 
| DOIs | |
| Publikationsstatus | Erschienen - 06.10.2014 | 
| Extern publiziert | Ja | 
| Veranstaltung | 8th ACM Conference on Recommender Systems - RecSys2014 - Crowne Plaza hotel in Foster City, Foster City, USA / Vereinigte Staaten Dauer: 06.10.2014 → 10.10.2014 Konferenznummer: 8 https://recsys.acm.org/recsys14/  | 
- Informatik
 - Wirtschaftsinformatik
 
