Detecting Various Road Damage Types in Global Countries Utilizing Faster R-CNN
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Road damages are of great interest for federal road authorities and their infrastructure management as well as the automated driving task and thus safety and comfort of vehicle occupants. Therefore, we are investigating the automatic detection of different types of road damages by images from a front-facing camera in the vehicle. The data basis of our work is provided by the ’IEEE BigData Cup Challenge’ and its dataset ’RDD-2020’ with a large number of labelled images from Japan, India and the Czech Republic. Our Deep Learning approach utilizes the pre-trained Faster Region Based Convolutional Neural Networks (R-CNN). In the first step, we classify the destination of the image followed by expert networks for each region. Between the explanation of our applied Deep Learning methodology, some remaining sources of errors are discussed and further, partly failed approaches during our development period are displayed, which could be of interest for future work. Our results are convincing and we are able to achieve an F1 score of 0 . 487 across all regions for longitudinal and lateral cracks, alligator cracks and potholes.
Originalsprache | Englisch |
---|---|
Titel | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 : Proceedings, Dec 10 - Dec 13, 2020 • Virtual Event |
Herausgeber | Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz |
Anzahl der Seiten | 9 |
Erscheinungsort | Piscataway |
Verlag | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Erscheinungsdatum | 10.12.2020 |
Seiten | 5563-5571 |
Aufsatznummer | 9378245 |
ISBN (Print) | 978-1-7281-6252-2 |
ISBN (elektronisch) | 978-1-7281-6251-5 |
DOIs | |
Publikationsstatus | Erschienen - 10.12.2020 |
Veranstaltung | IEEE International Conference on Big Data - BigData2020 - Atlanta, USA / Vereinigte Staaten Dauer: 10.12.2020 → 13.12.2020 https://bigdataieee.org/BigData2020/ |
- Wirtschaftsinformatik