Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications. / Mercorelli, Paolo.
in: Journal of the Franklin Institute, Jahrgang 344, Nr. 6, 01.09.2007, S. 813-829.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{c7531a3afdef4d05b51fa31fba25b675,
title = "Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications",
abstract = "The paper deals with a method of constructing orthonormal bases of coordinates which maximize, through redundant dictionaries (frames) of biorthogonal bases, a class separability index or distances among classes. The method proposes an algorithm which consists of biorthogonal expansions over two redundant dictionaries. Embedded classes are often present in multiclassification problems. It is shown how the biorthogonality of the expansion can really help to construct a coordinate system which characterizes the classes. The algorithm is created for training wavelet networks in order to provide an efficient coordinate system maximizing the Cross Entropy function between two complementary classes. Sine and cosine wavelet packets are basis functions of the network. Thanks to their packet structure, once selected the depth of the tree, an adaptive number of basis functions is automatically chosen. The algorithm is also able to carry out centering and dilation of the basis functions in an adaptive way. The algorithm works with a preliminary extracted feature through shrinkage technique in order to reduce the dimensionality of the problem. In particular, our attention is pointed out for time-frequency monitoring, detection and classification of transients in rail vehicle systems and the outlier problem. In the former case the goal is to distinguish transients as inrush current and no inrush current and a further distinction between the two complementary classes: dangerous inrush current and no dangerous inrush current. The proposed algorithm is used on line in order to recognize the dangerous transients in real time and thus shut-down the vehicle. The algorithm can also be used in a general application of the outlier detection. A similar structure is used in developed algorithms which are currently integrated in the inferential modeling platform of the unit responsible for Advanced Control and Simulation Solutions within ABB's (Asea Brown Boveri) industry division. It is shown how impressive and rapid performances are achieved with a limited number of wavelets and few iterations. Real applications using real measured data are included to illustrate and analyze the effectiveness of the proposed method.",
keywords = "Machine learning, Signal classification, Trigonometric bases, Wavelet networks, Wavelet packets, Classification (of information), Computer simulation, Learning systems, Problem solving, Signal processing, Smart sensors, Biorthogonal expansions, Multiclassification problems, Wavelet transforms, Engineering",
author = "Paolo Mercorelli",
note = "Cited By (since 1996): 1 Export Date: 22 May 2012 Source: Scopus CODEN: JFINA doi: 10.1016/j.jfranklin.2006.10.003 Language of Original Document: English Correspondence Address: Mercorelli, P.; Department of Vehicles, Production and Process Engineering, University of Applied Sciences Wolfsburg, Robert-Koch-Platz 8-a, 38440 Wolfsburg, Germany; email: p.mercorelli@fh-wolfsburg.de References: Mercorelli, P., Terwiesch, P., A black box identification in harmonic domain (2003) VDE Eur. Trans. Electr. Power, 13 (1), pp. 29-40; Zhang, Q., Using wavelet network in nonparametric estimation (1997) IEEE Trans. Neural Networks, 8 (2), pp. 227-236; Terwiesch, P., Menth, S., Schmidt, S., Analysis of transients in electrical railway networks using wavelets (1998) IEEE Trans. Ind. Electron., 45 (6), pp. 955-959; Mercorelli, P., Terwiesch, P., A signal classification algorithm using smooth local trigonometric bases (2002) Automatisierungstechnik Oldenburg Verlag, 50 (11), pp. 541-550; R Coifman, R., Wickerhauser, M.V., Entropy based algorithm for best basis selection (1992) IEEE Trans. Inform. Theory, 32, pp. 712-718; Daubechies, I., (1995) Cen Lectures on Wavelets, , Publisher Society for Industrial and Applied Mathematics, Philadelphia, PA;",
year = "2007",
month = sep,
day = "1",
doi = "10.1016/j.jfranklin.2006.10.003",
language = "English",
volume = "344",
pages = "813--829",
journal = "Journal of the Franklin Institute",
issn = "0016-0032",
publisher = "Elsevier Ltd",
number = "6",

}

RIS

TY - JOUR

T1 - Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications

AU - Mercorelli, Paolo

N1 - Cited By (since 1996): 1 Export Date: 22 May 2012 Source: Scopus CODEN: JFINA doi: 10.1016/j.jfranklin.2006.10.003 Language of Original Document: English Correspondence Address: Mercorelli, P.; Department of Vehicles, Production and Process Engineering, University of Applied Sciences Wolfsburg, Robert-Koch-Platz 8-a, 38440 Wolfsburg, Germany; email: p.mercorelli@fh-wolfsburg.de References: Mercorelli, P., Terwiesch, P., A black box identification in harmonic domain (2003) VDE Eur. Trans. Electr. Power, 13 (1), pp. 29-40; Zhang, Q., Using wavelet network in nonparametric estimation (1997) IEEE Trans. Neural Networks, 8 (2), pp. 227-236; Terwiesch, P., Menth, S., Schmidt, S., Analysis of transients in electrical railway networks using wavelets (1998) IEEE Trans. Ind. Electron., 45 (6), pp. 955-959; Mercorelli, P., Terwiesch, P., A signal classification algorithm using smooth local trigonometric bases (2002) Automatisierungstechnik Oldenburg Verlag, 50 (11), pp. 541-550; R Coifman, R., Wickerhauser, M.V., Entropy based algorithm for best basis selection (1992) IEEE Trans. Inform. Theory, 32, pp. 712-718; Daubechies, I., (1995) Cen Lectures on Wavelets, , Publisher Society for Industrial and Applied Mathematics, Philadelphia, PA;

PY - 2007/9/1

Y1 - 2007/9/1

N2 - The paper deals with a method of constructing orthonormal bases of coordinates which maximize, through redundant dictionaries (frames) of biorthogonal bases, a class separability index or distances among classes. The method proposes an algorithm which consists of biorthogonal expansions over two redundant dictionaries. Embedded classes are often present in multiclassification problems. It is shown how the biorthogonality of the expansion can really help to construct a coordinate system which characterizes the classes. The algorithm is created for training wavelet networks in order to provide an efficient coordinate system maximizing the Cross Entropy function between two complementary classes. Sine and cosine wavelet packets are basis functions of the network. Thanks to their packet structure, once selected the depth of the tree, an adaptive number of basis functions is automatically chosen. The algorithm is also able to carry out centering and dilation of the basis functions in an adaptive way. The algorithm works with a preliminary extracted feature through shrinkage technique in order to reduce the dimensionality of the problem. In particular, our attention is pointed out for time-frequency monitoring, detection and classification of transients in rail vehicle systems and the outlier problem. In the former case the goal is to distinguish transients as inrush current and no inrush current and a further distinction between the two complementary classes: dangerous inrush current and no dangerous inrush current. The proposed algorithm is used on line in order to recognize the dangerous transients in real time and thus shut-down the vehicle. The algorithm can also be used in a general application of the outlier detection. A similar structure is used in developed algorithms which are currently integrated in the inferential modeling platform of the unit responsible for Advanced Control and Simulation Solutions within ABB's (Asea Brown Boveri) industry division. It is shown how impressive and rapid performances are achieved with a limited number of wavelets and few iterations. Real applications using real measured data are included to illustrate and analyze the effectiveness of the proposed method.

AB - The paper deals with a method of constructing orthonormal bases of coordinates which maximize, through redundant dictionaries (frames) of biorthogonal bases, a class separability index or distances among classes. The method proposes an algorithm which consists of biorthogonal expansions over two redundant dictionaries. Embedded classes are often present in multiclassification problems. It is shown how the biorthogonality of the expansion can really help to construct a coordinate system which characterizes the classes. The algorithm is created for training wavelet networks in order to provide an efficient coordinate system maximizing the Cross Entropy function between two complementary classes. Sine and cosine wavelet packets are basis functions of the network. Thanks to their packet structure, once selected the depth of the tree, an adaptive number of basis functions is automatically chosen. The algorithm is also able to carry out centering and dilation of the basis functions in an adaptive way. The algorithm works with a preliminary extracted feature through shrinkage technique in order to reduce the dimensionality of the problem. In particular, our attention is pointed out for time-frequency monitoring, detection and classification of transients in rail vehicle systems and the outlier problem. In the former case the goal is to distinguish transients as inrush current and no inrush current and a further distinction between the two complementary classes: dangerous inrush current and no dangerous inrush current. The proposed algorithm is used on line in order to recognize the dangerous transients in real time and thus shut-down the vehicle. The algorithm can also be used in a general application of the outlier detection. A similar structure is used in developed algorithms which are currently integrated in the inferential modeling platform of the unit responsible for Advanced Control and Simulation Solutions within ABB's (Asea Brown Boveri) industry division. It is shown how impressive and rapid performances are achieved with a limited number of wavelets and few iterations. Real applications using real measured data are included to illustrate and analyze the effectiveness of the proposed method.

KW - Machine learning

KW - Signal classification

KW - Trigonometric bases

KW - Wavelet networks

KW - Wavelet packets

KW - Classification (of information)

KW - Computer simulation

KW - Learning systems

KW - Problem solving

KW - Signal processing

KW - Smart sensors

KW - Biorthogonal expansions

KW - Multiclassification problems

KW - Wavelet transforms

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=34547415047&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/2ed0adf5-92c2-3cf0-8463-97217c7b1105/

U2 - 10.1016/j.jfranklin.2006.10.003

DO - 10.1016/j.jfranklin.2006.10.003

M3 - Journal articles

VL - 344

SP - 813

EP - 829

JO - Journal of the Franklin Institute

JF - Journal of the Franklin Institute

SN - 0016-0032

IS - 6

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Inner loop model predictive control and outer loop PI reference governor for PMSMs with input and state saturation for torque control
  2. Automatic Error Detection in Gaussian Processes Regression Modeling for Production Scheduling
  3. Advanced Neural Classifier-Based Effective Human Assistance Robots Using Comparable Interactive Input Assessment Technique
  4. Flexible scripting in net-based learning groups
  5. Modelling and implementing business processes in distributed systems
  6. Interpreting Strings, Weaving Threads
  7. ACL–adaptive correction of learning parameters for backpropagation based algorithms
  8. Neural Network-Based Finite-Time Control for Stochastic Nonlinear Systems with Input Dead-Zone and Saturation
  9. Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
  10. Discourse Analyses in Chat-based CSCL with Learning Protocols
  11. An MPC for an Aggregate Actuator with a Self-Tuning Feedforward Control
  12. Preventive Emergency Detection Based on the Probabilistic Evaluation of Distributed, Embedded Sensor Networks
  13. Throttle valve control using an inverse local linear model tree based on a Fuzzy neural network
  14. Learning with animations and simulations in a computer-based learning environment about torques
  15. Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity
  16. Using mixture distribution models to test the construct validity of the Physical Self-Description Questionnaire
  17. Set-oriented numerical computation of rotation sets
  18. Trajectory-based computational study of coherent behavior in flows
  19. Digital Control of a Camless Engine Using Lyapunov Approach with Backward Euler Approximation
  20. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation
  21. Joint entity and relation linking using EARL
  22. Human–learning–machines: introduction to a special section on how cybernetics and constructivism inspired new forms of learning
  23. Supporting discourse in a synchronous learning environment
  24. Cross-document coreference resolution using latent features
  25. Performance analysis for loss systems with many subscribers and concurrent services
  26. On finding nonisomorphic connected subgraphs and distinct molecular substructures.
  27. Improved sensorimotor control is not connected with improved proprioception
  28. Expertise in research integration and implementation for tackling complex problems
  29. Changes in the Complexity of Limb Movements during the First Year of Life across Different Tasks
  30. Analysis of semi-open queueing networks using lost customers approximation with an application to robotic mobile fulfilment systems
  31. A decoupled MPC using a geometric approach and feedforward action for motion control in robotino
  32. Model predictive control for switching gain adaptation in a sliding mode controller of a DC drive with nonlinear friction
  33. Finding Creativity in Predictability: Seizing Kairos in Chronos Through Temporal Work in Complex Innovation Processes
  34. An application of multiple behavior SIA for analyzing data from student exams
  35. Continuous and Discrete Concepts for Detecting Transport Barriers in the Planar Circular Restricted Three Body Problem
  36. Control of an Electromagnetic Linear Actuator Using Flatness Property and Systems Inversion
  37. Machine Learning and Knowledge Discovery in Databases