Neural network-based adaptive fault-tolerant control for strict-feedback nonlinear systems with input dead zone and saturation
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
This study investigates the issue of adaptive fault-tolerant neural control in strict-feedback nonlinear systems. The system is subjected to actuator faults, dead-zone and saturation. To model the unknown functions, radial basis function neural networks (RBFNN) are employed. The proposed approach utilizes a backstepping technique to formulate an adaptive fault-tolerant controller, drawing upon the Lyapunov stability theory and the approximation capabilities of RBFNN. The resultant controller guarantees the boundedness of all signals in the closed-loop system, ensuring precise tracking of the reference signal by the system output with a small, bounded error. Finally, simulation results are provided to illustrate the efficacy of the proposed strategy in addressing actuator faults, dead-zone, and saturation.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 107471 |
Zeitschrift | Journal of the Franklin Institute |
Jahrgang | 362 |
Ausgabenummer | 2 |
Anzahl der Seiten | 21 |
ISSN | 0016-0032 |
DOIs | |
Publikationsstatus | Erschienen - 01.2025 |
Bibliographische Notiz
Publisher Copyright:
© 2024
- Ingenieurwissenschaften