A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics

Publikation: Beiträge in ZeitschriftenÜbersichtsarbeitenForschung

Standard

A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. / Bock, Frederic E.; Aydin, Roland C.; Cyron, Christian C. et al.
in: Frontiers in Materials, Jahrgang 6, 110, 15.05.2019.

Publikation: Beiträge in ZeitschriftenÜbersichtsarbeitenForschung

Harvard

APA

Vancouver

Bock FE, Aydin RC, Cyron CC, Huber N, Kalidindi SR, Klusemann B. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. Frontiers in Materials. 2019 Mai 15;6:110. doi: 10.3389/fmats.2019.00110

Bibtex

@article{32d5835b5f31401a997ef65b3f528e00,
title = "A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics",
abstract = "Machine learning tools represent key enablers for empowering material scientists and engineers to accelerate the development of novel materials, processes and techniques. One of the aims of using such approaches in the field of materials science is to achieve high-throughput identification and quantification of essential features along the process-structure-property-performance chain. In this contribution, machine learning and statistical learning approaches are reviewed in terms of their successful application to specific problems in the field of continuum materials mechanics. They are categorized with respect to their type of task designated to be either descriptive, predictive or prescriptive; thus to ultimately achieve identification, prediction or even optimization of essential characteristics. The respective choice of the most appropriate machine learning approach highly depends on the specific use-case, type of material, kind of data involved, spatial and temporal scales, formats, and desired knowledge gain as well as affordable computational costs. Different examples are reviewed involving case-by-case dependent application of different types of artificial neural networks and other data-driven approaches such as support vector machines, decision trees and random forests as well as Bayesian learning, and model order reduction procedures such as principal component analysis, among others. These techniques are applied to accelerate the identification of material parameters or salient features for materials characterization, to support rapid design and optimization of novel materials or manufacturing methods, to improve and correct complex measurement devices, or to better understand and predict fatigue behavior, among other examples. Besides experimentally obtained datasets, numerous studies draw required information from simulation-based data mining. Altogether, it is shown that experiment- and simulation-based data mining in combination with machine leaning tools provide exceptional opportunities to enable highly reliant identification of fundamental interrelations within materials for characterization and optimization in a scale-bridging manner. Potentials of further utilizing applied machine learning in materials science and empowering significant acceleration of knowledge output are pointed out.",
keywords = "Engineering, machine learning, materials mechanics, data mining, process-structure-property-performance relationship, knowledge discovery, machine learning, materials mechanics, data mining, process-structure-property-performance relationship, knowledge discovery",
author = "Bock, {Frederic E.} and Aydin, {Roland C.} and Cyron, {Christian C.} and Norbert Huber and Kalidindi, {Surya R.} and Benjamin Klusemann",
note = "Publisher Copyright: {\textcopyright} 2019 Bock, Aydin, Cyron, Huber, Kalidindi and Klusemann.",
year = "2019",
month = may,
day = "15",
doi = "10.3389/fmats.2019.00110",
language = "English",
volume = "6",
journal = "Frontiers in Materials",
issn = "2296-8016",
publisher = "Frontiers Media",

}

RIS

TY - JOUR

T1 - A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics

AU - Bock, Frederic E.

AU - Aydin, Roland C.

AU - Cyron, Christian C.

AU - Huber, Norbert

AU - Kalidindi, Surya R.

AU - Klusemann, Benjamin

N1 - Publisher Copyright: © 2019 Bock, Aydin, Cyron, Huber, Kalidindi and Klusemann.

PY - 2019/5/15

Y1 - 2019/5/15

N2 - Machine learning tools represent key enablers for empowering material scientists and engineers to accelerate the development of novel materials, processes and techniques. One of the aims of using such approaches in the field of materials science is to achieve high-throughput identification and quantification of essential features along the process-structure-property-performance chain. In this contribution, machine learning and statistical learning approaches are reviewed in terms of their successful application to specific problems in the field of continuum materials mechanics. They are categorized with respect to their type of task designated to be either descriptive, predictive or prescriptive; thus to ultimately achieve identification, prediction or even optimization of essential characteristics. The respective choice of the most appropriate machine learning approach highly depends on the specific use-case, type of material, kind of data involved, spatial and temporal scales, formats, and desired knowledge gain as well as affordable computational costs. Different examples are reviewed involving case-by-case dependent application of different types of artificial neural networks and other data-driven approaches such as support vector machines, decision trees and random forests as well as Bayesian learning, and model order reduction procedures such as principal component analysis, among others. These techniques are applied to accelerate the identification of material parameters or salient features for materials characterization, to support rapid design and optimization of novel materials or manufacturing methods, to improve and correct complex measurement devices, or to better understand and predict fatigue behavior, among other examples. Besides experimentally obtained datasets, numerous studies draw required information from simulation-based data mining. Altogether, it is shown that experiment- and simulation-based data mining in combination with machine leaning tools provide exceptional opportunities to enable highly reliant identification of fundamental interrelations within materials for characterization and optimization in a scale-bridging manner. Potentials of further utilizing applied machine learning in materials science and empowering significant acceleration of knowledge output are pointed out.

AB - Machine learning tools represent key enablers for empowering material scientists and engineers to accelerate the development of novel materials, processes and techniques. One of the aims of using such approaches in the field of materials science is to achieve high-throughput identification and quantification of essential features along the process-structure-property-performance chain. In this contribution, machine learning and statistical learning approaches are reviewed in terms of their successful application to specific problems in the field of continuum materials mechanics. They are categorized with respect to their type of task designated to be either descriptive, predictive or prescriptive; thus to ultimately achieve identification, prediction or even optimization of essential characteristics. The respective choice of the most appropriate machine learning approach highly depends on the specific use-case, type of material, kind of data involved, spatial and temporal scales, formats, and desired knowledge gain as well as affordable computational costs. Different examples are reviewed involving case-by-case dependent application of different types of artificial neural networks and other data-driven approaches such as support vector machines, decision trees and random forests as well as Bayesian learning, and model order reduction procedures such as principal component analysis, among others. These techniques are applied to accelerate the identification of material parameters or salient features for materials characterization, to support rapid design and optimization of novel materials or manufacturing methods, to improve and correct complex measurement devices, or to better understand and predict fatigue behavior, among other examples. Besides experimentally obtained datasets, numerous studies draw required information from simulation-based data mining. Altogether, it is shown that experiment- and simulation-based data mining in combination with machine leaning tools provide exceptional opportunities to enable highly reliant identification of fundamental interrelations within materials for characterization and optimization in a scale-bridging manner. Potentials of further utilizing applied machine learning in materials science and empowering significant acceleration of knowledge output are pointed out.

KW - Engineering

KW - machine learning

KW - materials mechanics

KW - data mining

KW - process-structure-property-performance relationship

KW - knowledge discovery

KW - machine learning

KW - materials mechanics

KW - data mining

KW - process-structure-property-performance relationship

KW - knowledge discovery

UR - http://www.scopus.com/inward/record.url?scp=85067394950&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/83157c73-372e-36e1-b362-a06d59d07c6c/

U2 - 10.3389/fmats.2019.00110

DO - 10.3389/fmats.2019.00110

M3 - Scientific review articles

VL - 6

JO - Frontiers in Materials

JF - Frontiers in Materials

SN - 2296-8016

M1 - 110

ER -

Dokumente

DOI

Zuletzt angesehen

Forschende

  1. Georg Reischauer

Publikationen

  1. Experiments are needed to quantify the main causes of insect decline
  2. Understanding the error-structure of Time-driven Activity-based Costing
  3. A comparison of the strength of biodiversity effects across multiple functions
  4. Putting adaptive planning into practice: A meta-analysis of current applications
  5. Kontext
  6. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach
  7. On the Relation of Boredom and Sadistic Aggression
  8. Second International Workshop on Linked Data-driven Resilience Research 2023
  9. Do children with deficits in basic cognitive functions profit from mixed age primary schools?
  10. Working hour arrangements and working hours
  11. The role of gestures in a teacher-student-discourse about atoms
  12. Logik
  13. Where Tasks, Technology, and Textbooks Meet: An Exploratory Analysis of English Language Teachers’ Perceived Affordances of an Intelligent Language Tutoring System
  14. Requests for reasoning in geometrical textbook tasks for primary-level students
  15. Addressing the financing needs of the European Union through three C’s
  16. Towards a Critique of Social Networking
  17. Revisions and further developments of the Occupational Stress Indicator
  18. Introduction: A strategy for overcoming the definitional struggle
  19. Essential ecosystem service variables for monitoring progress towards sustainability
  20. On the impact of network size and average degree on the robustness of centrality measures
  21. Microsatellites and allozymes as the genetic memory of habitat fragmentation and defragmentation in populations of the ground beetle Carabus auronitens (Col., Carabidae)
  22. An indirectly controlled high-speed servo valve for IC engines using piezo actuators
  23. Relative wage positions and quit behavior
  24. Dynamics of Supply Chains Under Mixed Production Strategies
  25. "Lob des Unscheinbaren"
  26. Sensitive, simultaneous determination of P, S, Cl, Br and I containing pesticides in environmental samples by GC hyphenated with collision-cell ICP-MS
  27. Personal need for structure as a boundary condition for humor in leadership
  28. Key landscape features in the provision of ecosystem services
  29. Widening the evaluative space for ecosystem services
  30. Interkulturelle Differenzen im Selbstkonzept von Managern
  31. Crowdsourcing Hypothesis Tests