
 

A Review of the Application of Machine Learning and Data Mining Approaches in
Continuum Materials Mechanics
Bock, Frederic E.; Aydin, Roland C.; Cyron, Christian C.; Huber, Norbert; Kalidindi, Surya R.;
Klusemann, Benjamin
Published in:
Frontiers in Materials

DOI:
10.3389/fmats.2019.00110

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Bock, F. E., Aydin, R. C., Cyron, C. C., Huber, N., Kalidindi, S. R., & Klusemann, B. (2019). A Review of the
Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. Frontiers in
Materials, 6, Article 110. https://doi.org/10.3389/fmats.2019.00110

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Juli. 2025

https://doi.org/10.3389/fmats.2019.00110
http://fox.leuphana.de/portal/en/publications/a-review-of-the-application-of-machine-learning-and-data-mining-approaches-in-continuum-materials-mechanics(32d5835b-5f31-401a-997e-f65b3f528e00).html
http://fox.leuphana.de/portal/de/persons/benjamin-klusemann(f5282598-b205-4cd5-b40d-8ce6761c531c).html
http://fox.leuphana.de/portal/de/publications/a-review-of-the-application-of-machine-learning-and-data-mining-approaches-in-continuum-materials-mechanics(32d5835b-5f31-401a-997e-f65b3f528e00).html
http://fox.leuphana.de/portal/de/publications/a-review-of-the-application-of-machine-learning-and-data-mining-approaches-in-continuum-materials-mechanics(32d5835b-5f31-401a-997e-f65b3f528e00).html
http://fox.leuphana.de/portal/de/journals/frontiers-in-materials(a9bc8b89-8894-4272-b2fc-810ea1ab1698)/publications.html
http://fox.leuphana.de/portal/de/journals/frontiers-in-materials(a9bc8b89-8894-4272-b2fc-810ea1ab1698)/publications.html
https://doi.org/10.3389/fmats.2019.00110


REVIEW
published: 15 May 2019

doi: 10.3389/fmats.2019.00110

Frontiers in Materials | www.frontiersin.org 1 May 2019 | Volume 6 | Article 110

Edited by:

Roberto Brighenti,

University of Parma, Italy

Reviewed by:

Andreas Menzel,

Technical University Dortmund,

Germany

Daojian Cheng,

Beijing University of Chemical

Technology, China

*Correspondence:

Frederic E. Bock

frederic.bock@hzg.de

Specialty section:

This article was submitted to

Computational Materials Science,

a section of the journal

Frontiers in Materials

Received: 04 February 2019

Accepted: 26 April 2019

Published: 15 May 2019

Citation:

Bock FE, Aydin RC, Cyron CJ,

Huber N, Kalidindi SR and

Klusemann B (2019) A Review of the

Application of Machine Learning and

Data Mining Approaches in

Continuum Materials Mechanics.

Front. Mater. 6:110.

doi: 10.3389/fmats.2019.00110

A Review of the Application of
Machine Learning and Data Mining
Approaches in Continuum Materials
Mechanics
Frederic E. Bock 1*, Roland C. Aydin 1, Christian J. Cyron 1,2, Norbert Huber 1,3,

Surya R. Kalidindi 4 and Benjamin Klusemann 1,5

1 Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany, 2 Institute of

Continuum and Materials Mechanics, Hamburg University of Technology (TUHH), Hamburg, Germany, 3 Institute of Materials

Physics and Technology, Hamburg University of Technology (TUHH), Hamburg, Germany, 4 School of Mechanical

Engineering and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA,

United States, 5 Institute of Product and Process Innovation, Leuphana University of Lüneburg, Lüneburg, Germany

Machine learning tools represent key enablers for empowering material scientists and

engineers to accelerate the development of novel materials, processes and techniques.

One of the aims of using such approaches in the field of materials science is to

achieve high-throughput identification and quantification of essential features along the

process-structure-property-performance chain. In this contribution, machine learning

and statistical learning approaches are reviewed in terms of their successful application

to specific problems in the field of continuum materials mechanics. They are categorized

with respect to their type of task designated to be either descriptive, predictive or

prescriptive; thus to ultimately achieve identification, prediction or even optimization

of essential characteristics. The respective choice of the most appropriate machine

learning approach highly depends on the specific use-case, type of material, kind of data

involved, spatial and temporal scales, formats, and desired knowledge gain as well as

affordable computational costs. Different examples are reviewed involving case-by-case

dependent application of different types of artificial neural networks and other data-driven

approaches such as support vector machines, decision trees and random forests as

well as Bayesian learning, and model order reduction procedures such as principal

component analysis, among others. These techniques are applied to accelerate the

identification of material parameters or salient features for materials characterization, to

support rapid design and optimization of novel materials or manufacturing methods, to

improve and correct complex measurement devices, or to better understand and predict

fatigue behavior, among other examples. Besides experimentally obtained datasets,

numerous studies draw required information from simulation-based data mining.

Altogether, it is shown that experiment- and simulation-based data mining in combination

with machine leaning tools provide exceptional opportunities to enable highly reliant
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identification of fundamental interrelations within materials for characterization and

optimization in a scale-bridging manner. Potentials of further utilizing applied machine

learning in materials science and empowering significant acceleration of knowledge

output are pointed out.

Keywords: machine learning, materials mechanics, data mining, process-structure-property-performance

relationship, knowledge discovery

INTRODUCTION

A key motivation of applying machine learning methods in
continuum materials mechanics is the prospect of enabling,
accelerating or even simplifying the discovery and development
of novel materials for future deployment. One of the main
challenges is to gain information on how to tailor material
characteristics in order to generate a successful combination
of (all) anticipated properties and performance attributes.
Therefore, identifying coupled physical phenomena at different
spatiotemporal scales, accounting for statistical uncertainties
and controlling the parameter space within the materials
structures are core interests in designing (new) materials for
specific applications. For scale-bridging, to couple the effects of
process parameters to microstructural features and to resulting
material properties and performance characteristics, it is also
important to consider the statistical variance of the process at
hand. Additionally, with respect to a more fundamental level,
data mining enables scientists to investigate and understand
complex nonlinear relationships. In these cases, data mining
and machine learning approaches often appear as intermediate
steps in approaching and penetrating a problem until a point
where the nature of the relationship of interest can be captured
by more general physics-based models replacing the trained
algorithms. More specifically, machine learning approaches
based on rigorous statistical approaches (e.g., Bayesian inference)
offer unique opportunities to calibrate objectively (based on
available data) unknown model forms and/or parameter values
in physics-based models.

Methodology wise, there are soft boundaries between the
disciplines of data mining and machine learning that are both
also related to the discipline of applied statistics, as they
compose toolsets in data science. These methods cannot be
seen separately, as they are strongly interrelated (Witten et al.,
2011). The process for data mining according to the cross-
industry standard (Chapman et al., 1999) consists typically of
(i) problem understanding; (ii) data understanding; (iii) data
preparation; (iv) data modeling and (v) data evaluation via
machine learning; as well as (vi) deploying the trained algorithm.
Hence, the application of machine learning and data mining
approaches usually involve an adequate pre-processing of the
relevant data as well as training, testing and validating the applied
algorithms. Subsequently, post-learning tasks such as feature
optimization and decision-making are frequently performed for
the prescriptive purpose of optimization.

For challenges within continuum materials mechanics,
different databased approaches were proposed in literature.

Due to the different spatial and temporal scales of various
data that are often involved, we are addressing the issues
along the process-structure-property-performance (p-s-p-p)
chain. Therefore, we are dividing our review of different
machine learning and data mining approaches into four
main sections depending on the main field of application:
process parameters, microstructure, mechanical properties and
performance. Furthermore, each field is divided into three
categories that refer to the type of machine learning or
data mining task and pursued objective: descriptive (e.g.,
identifying unknown patterns), predictive (e.g., approximations
based on available knowledge) and prescriptive (e.g., optimization
based on machine learning controlled decision-making). This
differentiation is according to Delen and Ram (2018) formulated
for business analytics. Similarly, Tan et al. (2009) divided
machine learning tasks into two major categories: predictive and
descriptive. However, in the context of materials mechanics and
process-structure-property-performance linkages, a prescriptive
machine learning task section appears suitable to account
for implemented optimizations. Consequently, we follow the
subsequent classification of the different approaches investigated
in this review:

A descriptive approach is of explanatory nature and means
that patterns within data can be recognized based on correlations,
trends or anomalies to answer questions on “why does
microstructure Y with properties Z occur for process parameter
X and how do they affect materials performances such as fatigue
and failure?”

A predictive approach is used to foresee specific consequences
induced by certain factors; thus, previously non-existing
results are generated through applying correlation, regression,
classification, or statistical inference techniques to process and
analyze existing data for answering questions such as “what kind
of microstructure Y will occur with particular properties Z if
process parameter X is changed?”

A prescriptive approach in this context means to provide
insight on “what should be done in terms of process parameters
X to obtain microstructure Y with properties Z?” to not only
identify and predict but also to implement optimized results
with respect to improved actions, e.g., in terms of a process-
microstructure-property relation.

A preliminary collection of descriptions about important
machine learning methods is provided, as they are used either
solely or diversely combined in the different studies discussed.
In this regard, Witten et al. (2011) states: “Experience shows
that no single machine learning scheme is appropriate to all data
mining problems. The universal learner is an idealistic fantasy.

Frontiers in Materials | www.frontiersin.org 2 May 2019 | Volume 6 | Article 110

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Bock et al. Machine Learning in Materials Mechanics

FIGURE 1 | Overview of different data analytics methods applicable within the

field of continuums materials mechanics, motivating to develop accurate and

comprehensive databases and to make them accessible. Three data sources

compose a common data structure: experiments, process models and

reduced order models. Experiments lead to empirical determination of

characteristics along the p-s-p-p chain. With process models, these

characteristics can be described and predicted. Via reduced order models,

data can be compressed and patterns recognized. Available data can be

analyzed via data mining and machine learning to generate new knowledge.

Own figure based on the idea of Smith et al. (2016).

As [. . . ] real datasets vary, and to obtain accurate models the
bias of the learning algorithm must match the structure of the
domain. Data mining is an experimental science.” The selection
of studies presented in this article is based on the applicability
of machine learning and data mining approaches to solve
challenges in continuum materials mechanics and by no means
exhaustive. An overview on linking process, structure, property
and performance characteristics for additive manufacturing of
metals via data analytics was provided by Smith et al. (2016). They
focused on computational and experimental methods. Machine
learningmethods are not allocated into a unique class of methods
but can be contained under subsections of the reduced-order
modeling section of different data sources relevant for data
analytics and data mining, as shown in Figure 1.

SHORT OVERVIEW AND DESCRIPTION OF
MACHINE LEARNING AND DATA MINING
METHODS

Machine learning as a scientific discipline is still emerging and
thus undergoing continuous change. While many of the methods
and algorithms employed have been known for decades, in
recent years, new approaches have matured to a degree that it
is valid to consider machine learning a new and still nascent
field, despite its already comprehensive development over a
considerable period of time. As such, what constitutes machine
learning exactly (as opposed to, e.g., descriptive statistics)
remains only fuzzily defined. With data-driven methodologies
being incorporated into domains such as materials science,
new variants and adapted machine learning methods have

been devised or are in the process of being fitted to the
challenges and data profiles unique to materials science. This
methodological domain-specificity should not be construed to
preclude the importance of “mainstay methods” of machine
learning such as artificial neural networks, which are in theory
all-purpose and adaptable to approximating (“learning”) any
function inherent in data [Universal Approximation Theorem
(Hornik, 1991)]. However, as approaches from data science
augment and merge with traditional research procedures of
materials science, the methods listed in this chapter cannot claim
to be an exhaustive enumeration of machine learning methods
viable for (continuum) materials mechanics, as constant changes
within the next few years are expected.

Within this context, the most commonly encountered class
of machine learning (to the extent that it is sometimes used
interchangeably with the term machine learning itself) is the
class of artificial neural networks (ANNs). Derived from a simple
precursor formulation dating back as far as 1958, the perceptron
(Rosenblatt, 1958), ANNs have gained in popularity as increasing
computing power and availability of data alleviate the two
bottlenecks which previously curtailed their use. The perceptron
itself was conceived a simple one-layer neural network and used
as a linear classifier.

In their simplest modern form, feedforward neural networks
(FFNNs) (Haykin, 1998; Russell et al., 2016) are multilayer
perceptrons, i.e., layers of vertices (neurons) in which each
neuron computes an output based on inputs from the
previous layer. The signal traverses through the network in a
unidirectional manner, gradually transforming the input signal
into an output signal as it percolates through the network,
hence named “feedforward.” Such networks are usually trained
using a back propagating gradient-descent error minimization
approach. The error is determined by comparing the current
network output to the correct output (which is available in
a supervised learning scenario). Individual neuron behavior is
then changed during the training/learning process by altering
the connection weights associated with each edge within the
network topology. Many different approaches exist to address
the various difficulties that are typically intrinsic to neural
networks, for instance, overfitting, local minima, determining
the optimal number of layers and neurons per layers, choice of
activation function, and human interpretability of the network,
among others.

Once enough layers of neurons are stacked, which can
be referred to as the depth of the underlying ANN, the
network behavior enters the regime of deep learning (DL).
With increased number of layers, new difficulties come into
focus, such as vanishing gradient problem (Hochreiter, 1998)
or computation time, among others, which are not absent with
the simpler architectures but are exacerbated in the case of DL.
DL architectures are, for the most part, agnostic concerning
the type of ANN, i.e., any kind of ANN can form the basis
for a DL architecture. Two subtypes of ANN architectures have
gained in popularity particularly over the last two decades, to
the degree that for complex problems, usually one of the two
is encountered at least as a component of the overall ANN
architecture, or as a pre-/post processing step of the learning
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pipeline. These are convolutional neural networks and long
short-term memory networks.

Convolutional neural networks (CNNs) are mostly
formulated as a variant of FFNNs and were pioneered in
1980 (Fukushima, 1980), and then reformulated in their
contemporary form in 1999 (LeCun et al., 1999). They are
suited particularly well for image recognition, i.e., recognizing
patterns in visual data (Schmidhuber, 2015; Russell et al., 2016).
Typically, a convolutional layer is shifted across the data akin
to a filter/detector in computer vision algorithms, requiring
only few parameters due to the convolving layer allowing for
effective weight replication as the “filter” is replicated across the
visual field. Pooling and normalization layers allow for stepwise
data simplification and for variable feature sizes, respectively.
While the suitability of CNNs for materials science may not be
immediately apparent, there are examples of direct applications
such as materials texture recognition (Cang and Ren, 2016;
Lubbers et al., 2017; Cecen et al., 2018), as well as indirect
application examples in which e.g., non-visual materials data
may be interpreted (Schwarzer et al., 2019).

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Russell et al., 2016) can compose ANNs
because they offer specialized memory neurons/units that chiefly
deal with the vanishing gradient problem (or inversely the
exploding gradient problem), which often lead to sub-optimal
local minima, especially as the number of neuronal layers
increases. As deep learning architectures are gaining increasingly
in popularity, LSTMs or variants thereof have gained in
popularity in lockstep with DL as a way of circumventing such
local entrapments. In short, “saving” important data points
over time from being drowned out and distributing their
error correction signal over longer periods allows for better
information storage concerning important events.

For dynamic problems in which a “data-point” is often
exposed to a temporal evolution of the materials state and
encompassing a series of actions, other approaches than for
the static case are often preferred. While many of these have
not migrated into materials science to a significant degree,
yet, it can be expected that customized methods suited for
dynamic problems will gain increasing importance, both as the
complexity of the target functions to be learned rises, and with
the incorporation of state dependencies (usually as a function
of time). Two of the major approaches to such problems are
reinforcement learning, which itself is comprised of different
methods such as Q-learning (Watkins and Dayan, 1992) and
recurrent neural networks (RNN) (Lipton, 2015; Russell et al.,
2016), that allow for directed circles within the ANN topology,
and thus for signals to oscillate and overlap with the computation
of subsequent samples. As a result, data is selectively passed
across sequence steps.

Worth mentioning are randomized neural networks, which
add random excitatory/inhibitory spikes to individual neurons
(Gallicchio et al., 2017) without stable internal states (Maass et al.,
2002) and radial basis neural networks (Orr, 1996), which are
typically shallow FFNNs using individual neuron-specific radial
basis functions to sum over neuron inputs and thus allow for
better individual neuron specialization.

One noteworthy alternative to neural networks are Support
Vector Machines (SVMs), introduced by Cortes and Vapnik
(1995). SVMs deviate from ANNs by not mapping to neither
continuous (regression problem) nor discrete (decision problem)
output, but rather by separating patterns through either
hyperplanes in the linearly separable case or a Kernel function
in the nonlinearly separable case. This Kernel-transformation
(“trick”) maps support vectors into a transformed feature space
in which separability is possible (using, e.g., a maximummargin).
Whereas, ANNs usually employ several layers, often composed of
simple neurons, SVMs can be interpreted as a specialized single
neural node.

Q-learning is a noteworthy reinforcement learning algorithm
concerned with learning policies, i.e., optimal choices for
sequential decision problems (Watkins and Dayan, 1992; Mnih
et al., 2013; van Hasselt et al., 2016), which is based on a reward
signal. In this particular variant, the reward signal is based on
a Q-function, which is a specific reward function that trades
off maximum rewards using a discount factor. Reward-based
learningmethods such as Q-learning are of particular importance
when the space of possible paths, i.e., the number of actions
to be taken in sequence, is high but in relation to the training
information available only sparsely populates that space.

Monte-Carlo methods (Andrieu et al., 2003) are usually a
way of inferring numerical approximations via random (i.i.d.)
sampling of a subset of the underlying data. In the context of
machine learning, they typically refer to methods to decrease
high-complexity environments and datasets and distill e.g., a
workable, smaller set of actions to be used by a reinforcement
learning algorithm such as Q-learning.

A random forest (Breiman, 2001) is an ensemble
learning method that combines multiple (typically weak
but computationally tractable) predictors, in this case decision
trees, into a composite “super predictor” which (depending on
the selection of the decision trees) is often not subject to the same
constraints as the individual, weaker predictors.

Bayesian learning (Russell et al., 2016) in the context of
machine learning is not a single class of methods but rather
an approach into which other machine learning methods can
be embedded. Utilizing Bayesian inferences, rooted in Bayes
theorem, leads to an optimal update on prior distributions
based on available observations. The approach is often used for
the parameter estimation of a given learning algorithm or to
compare the probabilistic fit between a model and the data to
be modeled; either to infer the desired model complexity, or to
decide between similarly complex models (Neal, 1996). Gaussian
process regression models offer a nonparametric approach to
building reduced-order models employing a special form of
Bayesian learning that might be ideally suited to continuum
materials mechanics problems because of their relatively small
sizes of datasets and lack of prior knowledge of model forms.

Fuzzy c-means (FCM) clustering (Bezdek et al., 1984), which
is related to k-means clustering, is usually used as a type of
unsupervised learning, often in the context of feature extraction
in data mining. The objective in such cases is to cluster data
points alongside salient features which are not pre-defined (Mai
et al., 2016). Fuzzy clustering denotes that feature-classification is
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not binary but rather given in terms of probability assignments
to multiple features. The algorithm randomly distributes cluster
centers among the data and iteratively changes the cluster
positions until an objective cost function is minimized.

Principal component analysis (PCA) (Abdi and Williams,
2009) is typically used as a simplifying preprocessing step and
not considered as a pure machine learning algorithm in itself.
In cases where data points consist of more parameters (i.e.,
higher dimensionality) than the learning model can handle, a
number of parameters may be merged until the data becomes
tractable for the desired learning model (“dimensionality
reduction”). PCA achieves this by projecting the data into a lower
dimensional space to retain the maximum amount of variance.
The projection leads to a reduced number of parameters, the
“principal components,” which capture the maximum amount of
information among their axes.

Multi-fidelity methods (Aydin et al., 2019) may grow to
be especially relevant for materials research, which often
involves computationally expensive simulations, in contrast to
other domains where training data is either already present
or inexpensive to generate. Multi-fidelity approaches use a
large number of cheap low-fidelity computational models for
generating the training data for the majority of the training
process, only switching to higher-fidelity simulations once the
learning contribution per computational cost spent surpasses
that of the lower-fidelitymodel. Themagnitude of saving depends
on the type of simulation, especially on the feasibility of defining
lower-fidelity versions of the computational model, and on the
degree to which the used machine learning algorithm relies on
gradient-descent-based methods.

In the context of materials science, all of the methods
mentioned in this section (with the exception of PCA) are mostly
used solitarily, i.e., as the only major component of the machine
learning approach. However, as the subfield matures and gains
further dissemination into materials science research, they are
expected to be used in tandemmore often in the future. They can
be either combined into (parallel) ensemble methods for which
each method contributes a prediction, or into a consecutive
serial learning pipeline, in which e.g., clustering is used for
feature determination in conjunction with a CNN for subsequent
feature learning.

Lastly, it may be worth noting that simple (and borderline
merely statistical) learning algorithms such as regression (Russell
et al., 2016) and decision trees (Quinlan, 1986) should not be
neglected, especially when only a low-sample regime is available
offering only a limited amount of extractable information
(as is often the case with time and resource expensive
experimental setups). Typical machine learning methodologies
may be inapplicable, in which case the aforementioned learning
algorithms may constitute the most suitable tool to “train”
a predictor.

PROCESS PARAMETERS

In this section, applications of machine learning approaches to
identify, approximate and optimize process parameters for a

variety of results are discussed. The choice of process parameters
is responsible for many features that arise in the ensuing
process-microstructure-property-performance chain. Examples
include identifying correlations between process parameters
and resulting microstructures (Popova et al., 2017), predicting
process-time requirements and part-geometry results (Xiong
et al., 2014) as well as correcting measurements, e.g., resulting
residual stress fields (Chupakhin et al., 2017). One set of features
arising from the process parameters relate to the material
microstructure itself. On the one hand, direct models can be used
to discover relevant relationships between causes (i.e., inputs)
and effects (i.e., outputs) (Xiong et al., 2014; Popova et al., 2017).
On the other hand, once such a forward model is validated,
they can be suitably interrogated for inverse relationships needed
in design, where the goal is to identify the specific process
parameters (and histories) that lead to a desired optimization of
the effects (Upadhyay et al., 2012).

Descriptive
Descriptive tasks such as pattern recognition and correlation
have been performed by Popova et al. (2017) for the
implementation of a data-driven workflow to identify
relationships between process parameters and resulting
microstructures in additive manufacturing. The proposed
workflow included data pre-processing, microstructure
quantification and dimensionality reduction to extract and
validate process-structure linkages (in the form of reduced
order models). The microstructures obtained via additive
manufacturing techniques are complex and highly depend on
specific process conditions. The generation of synthetic data
of these microstructures was accomplished via applying the
Monte-Carlo method. The dataset consisted of ∼1,600 unique
microstructures. The particular method applied in each step of
the workflow depends on the amount and type of data available.
For building a reduced-order model, three different approaches
were used: first, a so-called chord length distribution was
employed to quantify microstructural features such as grain sizes,
shape distributions and anisotropies. Second, a dimensionality
reduction and model reconstruction was achieved by PCA.
Third, a multivariate polynomial regression was used for
building a surrogate model to efficiently exploit the data. As a
result, a framework was created to substitute constitutive models
that are typically comprised of comprehensive multiscale and
multiphysical field equations by approaches such as advanced
statistics and machine learning that lead to highly efficient
identification of process-structure-property linkages.

Predictive
For the prediction of bead layer geometries during the additive
manufacturing process of robotic gas metal arc welding based
on the chosen process parameters, Xiong et al. (2014) used
two different prediction approaches: a feed forward artificial
neural network, see Figure 2, and a second-order regression
analysis. Important characteristics of the manufactured part,
such as thickness of the weld bead layer, surface quality and
dimensional accuracy affecting the geometry of the deposited
layers were included in the training of the ANN. The predictive
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FIGURE 2 | Illustration of a fully connected three-layered feedforward artificial neural network, with the ability to approximate non-linear processes, here, in particular,

linking process parameters of the additive manufacturing process of robotic gas metal arc welding as inputs to their resulting outputs: height and width of deposited

bead layer. Own figure based on the idea presented by Xiong et al. (2014).

equation of the second-order regression analysis consisted of a
quadratic polynomial considering four influential factors: wire
feed rate, welding speed, arc voltage and the distance between
nozzle and plate. When comparing the prediction results of both
methods to experimental findings, the bead width was marginally
underestimated and the bead height slightly overestimated. The
deviations were assumed to be based on influential effects
caused by heat accumulation that were not accounted for
by both approaches. Overall, both prediction approaches lead
to reasonable results; however, the error for the ANN was
consistently lower than the one of the second order regression
analysis. This is due to the superior capability of the ANN to
approximate nonlinear processes. Thus, a neural network might
be preferable to predict deposited layer width and height with
reasonable accuracy for future research (Xiong et al., 2014).

Prediction of the required cutting force during the turning
process of a titanium alloy was performed by Upadhyay et al.
(2012) with a neural network. In comparison to the experiments
that were conducted based on design of experiment (DOE) using
the response surface method, the neural network predictions
showed better performance on a small but statistically well-
distributed dataset. Sahu et al. (2018) also used neural networks
to predict the surface roughness in the turning process of a
titanium alloy while considering the three controllable process
parameters cutting speed, feed rate and cutting depth as input.
Additionally, they were able to link them to the measureable
outputs: cutting force, feed force and acceleration.

The prediction of higher-order microstructure statistics as
a function of the process parameters from both multiscale
experimental and simulation datasets was demonstrated in
recent studies (Brough et al., 2017a; Khosravani et al.,
2017; Yabansu et al., 2017; Popova et al., 2018). In these
preliminary explorations, reduced-order models were built using
a combination of dimensionality reduction (using PCA), feature

engineering (using Pearson correlations), and regression. Clearly,
there are many opportunities for the application of more
advanced machine learning approaches to this class of problems.

Prescriptive
The identification of process parameters to be applied for
obtaining anticipated results can be achieved by completing
a prescriptive task. Such a prescriptive task for measurement
correction on residual stress fields after laser shock peening
(LSP), obtained through the hole drilling method, was performed
by Chupakhin et al. (2017) via the use of an ANN. The process of
LSP allows to locally introduce deep compressive residual stresses
(Ding and Ye, 2006), which is of particular interest in applications
prone to fatigue failure. Hole drilling is the commonly used
technique to determine the depth dependent residual stress
field, but the method is limited to residual stresses below
60% of the yield stress. Chupakhin et al. (2017) developed an
ANN for correcting the measured residual stress profile. About
250 training patterns were computed from elastic-plastic FEM
simulations of a pre-stressed plate with increasing hole depth by
random combination of material properties and residual stress
profiles covering the typical range of alloys and LSP profile
shapes. The computed deformation field on the surface of the
plate was analyzed using the Integral method (Schajer, 1988),
which is also used in hole drilling experiments. This “measured”
residual stress profile served as input while the residual stress
profile applied to the plate served as desired output. The dataset
revealed that the error is still below 10% up to a residual stress of
80% of the yield strength. For larger values, the error of the hole
drillingmethod can rise up dramatically and requires a correction
using the ANN. Based on the corrected residual stress profiles,
the relationship between process parameters and residual stresses
could be determined via DOE. This allowed for designing the
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FIGURE 3 | Comparison of experimental and reconstructed micrographs of rolled aluminum alloy AA3002. (A) Shows a two-dimensional polarized light micrograph of

the alloy and (B) shows a representative three-dimensional reconstruction of the experimental micrograph in (A). Reprinted from Sundararaghavan and Zabaras

(2005), Copyright (2005), with permission from Elsevier.

LSP process to generate desired residual stresses in 2.0 mm-thick
AA2024T3 sheet material (Chupakhin et al., 2019).

MICROSTRUCTURE

Numerous research results have been published on
microstructural quantification (Altschuh et al., 2017; Voyles,
2017; Gobert et al., 2018), classification (DeCost and Holm, 2015;
Chowdhury et al., 2016; DeCost et al., 2017), evolution (Gomberg
et al., 2017) and reconstruction (Sundararaghavan and Zabaras,
2005; Bostanabad et al., 2016). Bridging length-scales around the
microstructure can be pursued via either bottom-up approaches,
e.g., through homogenization or via top-down approaches, e.g.,
through localization. Moreover, it can be achieved through
descriptive, predictive and prescriptive approaches. Based
on the descriptive identification of linkages between process
parameters, generated microstructures and resulting mechanical
properties (Deshpande et al., 2016; Cecen et al., 2018), as well as
the related fatigue performances and failure mechanisms (Spear
et al., 2018), it is possible to predict or even prescriptively tailor
and optimize microstructural features.

Descriptive
The descriptive characterization of the microstructure of random
heterogeneous materials remains an important challenge in
materials mechanics. To this end, descriptors such as n-point
spatial correlations (also called n-point statistics) are used.
Sundararaghavan and Zabaras (2005) showed that SVMs in
combination with PCA can help to classify microstructures and
reconstruct three-dimensional representative volume elements
(RVE) using such descriptors, as shown in Figure 3, with
nearly real-time efficiency. This idea was significantly extended
by Niezgoda et al. (2013) who suggested to represent the
microstructure by stochastic processes that allow for a largely
automated classification of microstructures. The framework also
naturally leads to delineation of a comprehensive space of

microstructures (Niezgoda et al., 2008), and the instantiations of
microstructures from statistics (Fullwood et al., 2008; Turner and
Kalidindi, 2016).

Fast and Kalidindi (2011) presented an efficient approach
for localization, i.e., calculating the strain field in the relevant
volume element for given loading conditions, based on the
materials knowledge systems (MKS) (Kalidindi et al., 2010;
Landi et al., 2010). Core of this approach is the description of
the material response (e.g., microscale strain field) via a series
of convolution integrals. Statistical continuum theory (Kröner,
1977) provides the basis for the approach, i.e., it inspires the
model form for the reduced-order model. Central to the MKS is
the calibration of the influence filters present in these linkages.
This calibration is accomplished using results from numerical
models, typically from finite element calculations of the responses
of microscale volume elements (MVE) or RVE, respectively.
Different model building approaches have been used in this
body of work. Fast and Kalidindi (2011) used linear regression,
removing redundancies by employing a reduced-row echelon
form. This work demonstrates the suitability of the kernel-
based series model form employed that systematically adds more
terms as higher levels of microscale interactions are needed to
be captured.

The MKS approach from Kalidindi et al. (2010) was also
utilized in a study on elastic localization kernels for single
phase polycrystalline microstructures (Yabansu et al., 2014) as
well as for a wide range of cubic polycrystals (Yabansu and
Kalidindi, 2015). The goal was also to efficiently achieve scale
bridging in modeling and simulation of materials involving
numerous scales. It is claimed that the most advanced material
structures possess a highly hierarchical internal structure with
different length scales. Therefore, the MKS framework is used to
capture high dimensional local state spaces of advanced material
systems for the prediction of elastic strain fields in a broad class
of cubic polycrystalline microstructures (Figure 4). Significant
reduction of required computational effort was achieved through
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FIGURE 4 | Comparison of strain field distributions within middle slices for a low elastic anisotropy cubic polycrystalline microstructure (21 × 21 × 21 pixels) obtained

from predictions performed with (A) materials knowledge system (MKS) and (B) finite element method (FEM). Reprinted from Yabansu and Kalidindi (2015), Copyright

(2015), with permission from Elsevier.

spectral representations of the influence functions that are
highly compact.

In the area of materials characterization and microscopy,
Voyles (2017) focused on improving the quality of data
obtained empirically from instruments (microscope, in this
case), optimally deriving information from that, to ultimately
develop generalizations and gain new knowledge. Besides
that, microstructure quantification and feature identification in
porous membranes was studied by Altschuh et al. (2017). Data
generation was conducted via a newly developed microstructure
generator, to generate a large ensemble of porous structures
that contain a large variety of different features, such as
pore shape, pore size, degree of porosity, and specific surface
area. Experimental data was obtained via high-resolution X-
ray tomography to measure the morphology of real porous
membranes. To be able to compare the two different datasets,
statistical representations for both simulated and real membrane
microstructures were calculated and compared based on a PCA of
two-point spatial correlations. This leads to an objective measure
of the difference between any two selected microstructures; thus,
to a quantification of the porous membrane structures. A PCA
on these two-point statistics was used to obtain low dimensional
representations of the microstructures and to classify them.
For the basic microstructure, the most dominant features are
porosity, pore size, stretching direction and stretching factor.
These features were identified as a basis in the low dimensional
space. A high variety of microstructure characteristics and its
influence on the low dimensional space lead to the identification
of linkages. As a result, the basis vector and the principal
component value were successfully used to estimate the features
of the real membranes.

Predictive
For the purpose of providing an efficient linkage for localization,
Liu et al. (2015b) compared the performance of different
approaches based on machine learning and data mining
concepts. One particular goal was to overcome limits in terms
of applicability of the previous linkage approach based on

the extension of statistical continuum theory to higher elastic
contrasts of the composition (Kalidindi et al., 2011). The
linkage is established based on setting up a predictive model,
consisting of the two aspects, feature extraction and regression.
Three test cases were analyzed to evaluate the influence of
different steps in generating the data-driven predictive model for
localization. First, the influence of additional information about
the neighboring voxels, called feature space, on predicting the
response of the currently influenced voxel is studied. However,
the computational performance is decreasing linearly due to
the increased training time with growing number of included
neighbors, meaning the feature dimensions, and the prediction
might be even deteriorated. Secondly, the influence of differently
defined features on the representation of considered voxels are
systematically analyzed and subsequently ranked. Based on this
ranking, a combination of different top-ranked features are
juxtaposed, showing the improved performance in contrast to
simply adding information of the neighboring grains. However,
there exists a feature threshold where the error increases with
increasing information. Thirdly, the performances of different
regression models are compared, showing that a random forest
regression model outperformed the considered support vector
regression model and M5 model tree in terms of accuracy by
only a moderately increased training time compared to the
M5 model tree. This approach was extended by Liu et al.
(2017) through considering context detection, i.e., “finding the
right high-level, low dimensional, knowledge representation in
order to create coherent learning environments” (Liu et al.,
2017). In this regard, a two-step approach is used. First,
identifying the context of the data and secondly constructing
the predictive model for each context, also called multi-agent
learning, lead to an increased efficiency and accuracy of the
predictive model. Key difference to the previous work of the
authors is the identification of microstructure similarities, called
macro-features, and assembling them to a subset using k-means
clustering algorithm. Subsequently, each subset is handled with
the approach as presented in their previous work (Liu et al.,
2015b) and discussed above, using the best 57 features, called
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micro-features. Three strategies of identifying the microstructure
macro similarities are investigated and their performance
compared. These strategies include context detection based on
volume fractions alone, on “designed macroscale microstructure
descriptors” (Liu et al., 2017) and on pair correlation functions.
The results showed an improvement of 38% compared to the
best results presented by Liu et al. (2015b). The accuracy of
the different strategies for the macro feature extraction was
nearly identical.

Automatic microstructure recognition was implemented by
Chowdhury et al. (2016) in a case study on image-driven
machine learning methods. The dendritic morphologies were
of particular interest with the aim of performing classification
with a minimum of required pre-expert-knowledge. Thus, the
anticipated knowledge gain was claimed to be equivalent to
human performance, but not beyond. The first classification
task was to differentiate between dendritic and non-dendritic
microstructures. The second classification task aimed to
recognize longitudinal and transverse dendrite orientations via
a successional binary classification task performed on cross-
sectional views. Images with different magnitudes and from
different material-compositions served as initial data input.
Feature extraction and dimensionality reduction were used to
represent micrographs as feature vectors. These feature vectors
were then used for training, validating and testing various
classification models. They consist of a set of detected features
in an image; thus, images were represented by high-dimensional
feature vectors (Figure 5). Feature selection is performed to
increase computational efficiency by reducing the length of the
feature vector and still retain all relevant image information
(e.g., reducing sparsity of the vector). Various dimensionality
reduction methods were tested, and in conclusion, convolutional
neural networks were evaluated best for both classification tasks
with an accuracy of 92–98% as generalization can be performed
most sufficiently.

Microstructural images were used by Ling et al. (2017) to
set-up a data-driven model for microstructure classification,
using pre-trained convolutional neural networks within the
framework of Keras (Chollet et al., 2015) and Tensorflow
(Abadi et al., 2016). The specific model was trained, tested and
validated with the aim to process different datasets through
generalization, including the identification of the required
number of features and an evaluation of the interpretability of
results. First, the microstructural images were transformed by
using CNNs, followed by texture featurization and classification
through a random forest algorithm (Figure 6). The required
computational effort is proportional to the number of features.
Mean texture featurization showed good performance based on
the comparatively low number of features that requires less
memory space and enables efficient computation of the random
forest classifier. Overall, an appropriate method for featurizing
images obtained via Scanning Electron microscope (SEM) was
developed and applied. Generalization was achieved sufficiently
from the input based on different datasets as opposed to only one
single dataset and allowed for various prediction targets.

A descriptive and predictive approach is proposed by
Hu et al. (2018) for the efficient simulation of grain and

pore growth in aluminum alloys during solidification in a
casting process. A cellular automaton (CA) is combined with
backpropagation neural networks (BPNN), resulting in a so-
called CA-BPNN method to simulate the growth of pores and
grains. Computational effort is reduced since the continuous
governing equations with high-dimensionality to account for
porosity do not have to be solved. The neural network is used
on data obtained from a process simulation of the solidification
via CA to economically identify the relationship between porosity
and solidification parameters1, such as solidus velocity, initial
hydrogen content as well as spatial and temporal thermal
gradients. These relationships are considered in the transition
functions, which compose the rules for the cellular automaton
model and affect the simulated pore growth in addition to the
governing equations of the numerical simulation (Figure 7).

For metallurgical texture analysis, in particular classification
of zones of titanium alloy microstructures into either α and β or
α + β phases, respectively, Mesquita Sá Junior et al. (2018) used
a randomized neural network for identifying microstructural
features. In particular, linear discriminant analysis (Fukunaga,
1990) and SVMs reached good and similar precisions for both
types of microstructures. For example, this approach was applied
for classifying titanium alloys processed via friction stir welding,
as the existing phase type has a strong effect on the mechanical
material properties.

An example of performing a predictive task based on
the descriptive approach of defect pattern recognition was
performed by Gobert et al. (2018). For in-situ detection of
discontinuities, such as defects, during the process monitoring
of additively manufactured metals via powder bed fusion, a
supervised machine learning approach was implemented on
high-resolution images recorded via computer tomography
during the building of layers. For geometrically describing
discontinuities, adjacent voxels that exhibit anomalies were
clustered. The particular assignment of each anomaly voxel to
their correlating discontinuity was achieved through k-means
clustering, which is based on the minimum distance of a voxel to
the center of its cluster. The aimwas to detect discontinuities with
diameters between 20 and 200µm. Furthermore, visual features
in the form of high-dimensional feature vectors were extracted
and evaluated through binary classification via SVMs. Once the
ensemble classifier was trained, the accuracies amounted to 80%
and better for predictively detecting defects during the process,
validated with three dimensional computer tomography images
of the manufactured parts.

Prescriptive
A particular challenge is the identification and prediction
of optimized microstructure configurations to prescribe the
best material properties for specific applications. Liu et al.
(2015a) presented an approach for microstructure optimization,
enhanced by machine learning methods, as outlined in
Figure 8. Although, a number of methods for determining the
properties directly from a given representation are available,

1Consequently, this work simultaneously qualifies for the Predictive Section of this
article: prediction of process parameters.
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FIGURE 5 | Schematic illustration of a micrograph classification approach on different material compositions including feature extraction, feature selection and

classification methods used. The two classification tasks were to first differentiate between dendritic and non-dendritic microstructures and second to recognize

longitudinal and transverse dendrite orientations. Reprinted from Chowdhury et al. (2016), Copyright (2016), with permission from Elsevier.

FIGURE 6 | Schematic depiction of the workflow for microstructure feature

evaluation. For the image transformation, five stacks of convolutional neural

networks were used, each of them consisting of either two or three

convolutional layers, succeeded by a max pooling layer. Indices of

convolutional layers are referring to their stack position, e.g., first, seconds or

third position within the e.g., first, second, third, fourth of fifth stack. The

outputs were processed via featurization of the texture and the ultimate

classification of these features was achived by using a random forest.

Reprinted from Ling et al. (2017), Copyright (2017), with permission from

Elsevier.

the traditional structure-property optimization, representing the
inverse procedure, is complex. The optimization problem might
be of high dimension, multiple objectives have to be fulfilled
and the result is often non-unique; thus, deteriorate classical
optimization methods. In Liu et al. (2015a), a machine learning-
based structure-property optimization scheme, see Figure 8,
is introduced and applied to the design of magneto elastic

Fe-Ga alloy for five different design problems. At the core
of the new scheme are random data construction as well as
feature selection and classification algorithms to refine the
search path and to reduce the search region, respectively. The
latter two steps have the goal to reduce the search space
and by this, to decrease the computational costs to find the
optimal solution. The microstructure of the magneto elastic
Fe-Ga alloy was represented by an orientation distribution
function (ODF). In combination with a crystal plasticity model,
all relevant properties considered in this work were obtained
via homogenization. For the random microstructure data
generation, four randomization methods were used to ensure
the sufficient randomness and polarization: random intervals,
random k intervals, random every k and best-first assignment.
The search path refinement is based on supervised feature
ranking methods [χ² (Liu and Setiono, 1995), information
gain (Quinlan, 1986), f-score (Steinwart and Christmann, 2008)
and SVM-weight (Chang and Lin, 2008)] to identify the most
promising path, i.e., crystal orientations or ODF dimension.
For the search space reduction, a rule-based classification tree
(decision tree) is used, e.g., to identify promising orientation
regions. For the design problems published by Liu et al.
(2015a), the original region could be reduced by 80–99%.
A gradient-based line search is employed to perform the
mathematical optimization. The authors compare the outcome
and the performance of the machine learning-based scheme
to three other approaches, namely an exhaustive search, a
generalized pattern search and linear programming (LP) as
well as a genetic algorithm (GA), respectively. Overall, the
results by Liu et al. (2015a) illustrate that the machine learning-
based scheme outperforms all other approaches, considering
optimality, efficiency2 and completeness of the solution, in
particular dealing with nonlinear problems.

Brough et al. (2017b) set-up a prescriptive framework for
capturing and communicating critical information regarding
the material structure evolution in spatiotemporal multiscale
simulations to reduce the number of required experiments.

2LP was faster for linear problems. GA was reported to be faster for nonlinear
problems as well but the authors Liu et al. (2015a) reported that the algorithm
worked poorly for the considered problem.
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FIGURE 7 | Schematic illustration of the cellular automaton backpropagation neural network (CA-BPNN) method for simulation of the solidification process of

aluminum alloys during casting. The simulation is divided into two parts: grain growth and pore growth. For the simulation of grain growth, conventional numerical

methods are used; whereas for the pore growth simulation, a BPNN was used to efficiently provide complementary rules for the CA. Reprinted from Hu et al. (2018),

Copyright (2018), with permission from Elsevier.

FIGURE 8 | Illustration of two schemes for structure-property optimization as presented by Liu et al. (2015a). The top illustrates the traditional structure-property

optimization, usually based on a search-based optimization method. On the bottom, the machine learning-based structure-property optimization approach is

presented. It includes three additional steps. First, data is generated and subsequently used to refine and reduce the search space dimensions, leading to optimal

results, better performance and providing a better solution completeness compared to methods following the traditional optimization route. Figure “Framework of

material structure optimization” reprinted from Liu et al. (2015a), used under the Creative Commons Attribution 4.0 license.

http://creativecommons.org/licenses/by/4.0, Copyright (2015), font type and colors altered from original.

They aimed for establishing the desired process-structure-
property linkages by generalizing the MKS framework via
introducing different basis functions and exploring their
benefit. Using Cahn-Hilliard based phase field simulations to
predict microstructure evolution and using Green’s function
based influence kernels as a method to identify the underlying
embedded physics, lead to a calculation acceleration by
the factor of three compared to an optimized numerical
integration algorithm. It is important to distinguish the
direction of relationships. Consequently, the kernels in the
MKS localization approach are calibrated with results from
numerical tools such as FEM. Once the linkages are calibrated
and validated, the influence kernels can be used to predict

the local responses of new microstructures at minimum
computational costs. Thus, this approach is sufficient for
exploring a very large number of potential microstructures.
The extracted kernels were insensitive to details of the initial
microstructure, enabling the application of the kernel to any
initial microstructure within the material system selected
for that kernel and allowing for expanding the domain
size without significant alteration of the accuracy. The
overall achievement of this study was the rapid exploration
of the underlying physics via Green’s function based
influence kernels at exceptionally low computational costs,
opening up superior opportunities for spatiotemporal
multiscale bridging.
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MECHANICAL PROPERTIES

Mechanical material properties are characteristics to be precisely
predicted and controlled as they are strongly linked to and highly
affected by process parameters and resulting microstructures.
Mechanical behavior in simulations is often described by
means of constitutive equations. Already before the most
recent popularity rise of machine learning in the scientific
community, several approaches had been suggested to replace
constitutive equations by data-based methods such as artificial
neural networks (Hashash et al., 2004; Oeser and Freitag, 2009).
Such approaches are particularly promising for problems where
it remains poorly understood how to describe the material
behavior appropriately by means of constitutive equations,
for example, remodeling of biological bones as discussed by
Hambli et al. (2011). Other examples include the prediction of
compressive strength and elastic modulus of sandcrete materials
(Asteris et al., 2017) and approximation of yield strength while
respecting diverse physical constraints for the design of a nickel-
based superalloy (Conduit et al., 2017). In general, descriptive
tasks, such as pattern recognition, predictive tasks, such as
classification as well as prescriptive tasks, such as optimization,
are implemented to fulfill the material property requirements of
particular material applications.

Descriptive
Hambli et al. (2011) substituted constitutive equations by a data-
driven ANN. A combined model composed of a finite element
(FE) simulation and an ANN was developed for simulating
the remodeling process of bones and linking the mesoscopic
scale of the “trabecular network” level to the macroscopic scale
of the complete bone level, as shown in Figure 9. While the
FE simulation was implemented on the macroscopic scale, an
ANN was used to provide predictions at the mesoscopic scale.
The FE analysis was based on digital CT image voxels used to
build mesoscale RVEs, whereas the ANN was provided with
parameters of the bone materials as well as boundary conditions
and applied stresses. The anticipated outputs were the updated
bone properties.

In the data-driven approach presented by Kirchdoerfer and
Ortiz (2016), the need for empirical material modeling, which can
require extensive efforts, is circumvented by performing more
efficient calculations directly from a material dataset obtained
through experiments. Through the combination of experimental
data, relevant constraints and essential conservation laws,
the data-driven calculations were restricted to remain within
boundaries prescribed by principles of conservation and relevant
limits related to the specific problem. In particular, through the
data-driven model, the nearest possible state of a materials data-
point of interest to the experimental dataset is assigned to a
point in the computational material model that simultaneously
fulfills the boundary conditions. This nearest possible state
is determined via a distance-minimization function in the
phase space between the experimental data points and the
newly proposed data points from the data-driven computational
model. The approach was applied to a mechanical problem
of a non-linear three-dimensional truss system with linear

elastic properties. The developed data-driven solvers showed
good convergence, especially in comparison to a classical finite
element model analysis. An extension of this approach was the
investigation of its robustness with respect to noise induced
by outliers within experimental datasets, which was achieved
through a cluster analysis (Kirchdoerfer and Ortiz, 2017).
Furthermore, the data-driven computing approach is extended in
Kirchdoerfer and Ortiz (2018) to time-dependent problems such
as predicting annealing processes.

Ibañez et al. (2018a) proposed a data-driven computational
approach to compensate for the inability of existing constitutive
models to be extended or generalized for describing new
experimental results without significant adaptation efforts. To
describe the elastic material behavior, there was no need for
a constitutive model that could reflect linear and non-linear
elastic behavior or yield conditions. Proposed were two different
linearization strategies for utilizing an iteration solver to define
points in the material model that fulfill both constitutive and
equilibrium equations within large experimental datasets.

However, more recently, Ibáñez et al. (2018b) proposed an
approach on combining governing equations with constitutive
plasticity models and experimental data via machine learning.
Based on the benefit of contained constitutive equations,
the approach is claimed to be more accurate and efficient
than approaches without a model. The use of sparse proper
generalized decomposition (s-PGD) enabled to correct
constitutive plasticity models in order to minimize the error
between the results generated by the model and those obtained
via experiments. Through this approach, it was possible to
utilize substantial knowledge already contained in the model, as
opposed to training an algorithm from scratch.

Liu et al. (2018) proposed a so-called deep material network
that was implemented for modeling materials on multiple scales,
based on homogenization of two-dimensional RVE’s. With data
obtained from linear elastic RVE calculations, the deep generic
material network was trained via stochastic gradient descent
with backpropagation and enhanced via model compression by
removing redundancies3 in the network. As a result, learning and
convergence was achieved in less time. A number of connected
building blocks, as common for generic algorithms, are used
in combination with solutions from homogenization of two
dimensional elastic RVE’s to preserve important information
about the mechanical physics. The trained network was validated
with numerical simulations for cases of linear elasticity, nonlinear
plasticity and finite-strain hyperelasticity exposed to large
deformations; thus, it provides a description of mechanical
microstructure-property linkages, however, it can also be used for
prediction purposes during material development.

To derive relationships between process parameters,
microstructure and mechanical properties for additively
manufactured materials, Yan et al. (2018) proposed a
comprehensive, data-driven model, containing multiple
scales to respect numerous underlying physical phenomena.
To enable an efficient and accurate data-driven mechanical
simulation for material design, a reduced order modeling

3Removing redundancies refers to the deletion of nodes those function is f = 1.
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FIGURE 9 | Multiscale finite element neural network (FENN) approach for bone analysis: two-level analysis for predicting the remodeling process. Macroscale level:

whole bone computed using FE analysis. Mesoscale level: effective properties of trabecular bone structure computed using a trained neural network. Reprinted from

Hambli et al. (2011), Copyright (2010), with permission from Springer Nature.

technique was developed, the so-called self-consistent clustering
analysis (SCA), which is based on the works of Liu et al.
(2016a) and Liu et al. (2016b). The SCA was used on the
mesoscale to connect the microstructural model to macroscopic
properties. Processed data consisted of voxels from non-linear
materials with complex microstructural morphologies. Instead
of solving constitutive equations for each voxel, clusters
of voxels are formed, e.g., via the k-means method, and
constitutive equations were solved for each of those clusters.
As a result, SCA served as reduced order method that leads
to a valuable compromise between efficiency and accuracy of
the results.

Huber (2018) addressed a number of fundamental questions
regarding the topological description of materials characterized
by a highly porous three-dimensional structure with bending
as the major deformation mechanism. This is the dominant
deformation mechanism in nanoporous gold, foams, porous
membranes and some architecture materials. Highly efficient
finite-element beam models were used for generating data on
the mechanical behavior of structures with different topologies,
ranging from highly coordinated bcc to Gibson–Ashby structures

(Gibson and Ashby, 1997). Random cutting enabled a continuous
modification of average coordination numbers ranging from
the maximum connectivity to the percolation-cluster transition
of the 3D network. Via data mining, the interdependencies
of topological parameters as well as relationships between
topological parameters with mechanical properties were
discovered. It was found that the average coordination number
serves as a common key for determining the cut fraction,
the scaled genus density, and the macroscopic mechanical
properties. The dependencies of macroscopic Young’s modulus,
yield strength, and Poisson’s ratio on the cut fraction (or average
coordination number) could be represented as master curves,
covering a large range of structures from a coordination number
of 8 (bcc reference) to 1.5, close to the percolation-cluster
transition. As an interesting outcome, the data for macroscopic
Young’s modulus and yield strength are covered by a single
master curve. This lead to the important conclusion that the
relative loss of macroscopic strength due to pinching-off of
ligaments corresponds to that of macroscopic Young’s modulus.
In principle, the derived master curves can be used to design the
macroscopic stiffness, strength and Poisson’s ratio of open pore
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materials by adjusting the connectivity of the material, leading to
a prescriptive approach.

Predictive
Effective macroscopic mechanical properties of a material with
a given microstructure can be predicted via computational
homogenization and is another typically time-consuming
task in materials mechanics, for which recently machine
learning techniques such as ANNs have been proposed as
a viable and computationally efficient alternative (Le et al.,
2015). Predicting the mechanical properties of a material
depending on its processing can be a challenge and hard to
tackle even with computational methods because an accurate
physical model that could reliably link processing parameters
and materials properties is often lacking. In such cases,
artificial neural networks are often used to predict mechanical
properties based on mechanical models and experimental data
(Chopra et al., 2016).

The prediction of rising or falling material hardness, based on
residual stresses and contact pressure of spherical indentation
tests was investigated by several groups via experimental and
FEM simulations. Heerens et al. (2009) presented a model that
allows to compute the change in hardness for arbitrary in-plane
biaxial residual stress states including the special cases of uniaxial,
equibiaxial, and pure shear residual stress. Relevant for this
review is the way this model was found. Based on a 3D FEM
model, hardness training patters were generated for randomly
chosen elastic-plastic materials with nonlinear work hardening.
For each pattern, a pair of data with and without residual stresses
was computed. It turned out that an ANN could easily predict
the increase or decrease of the hardness relative to the material
without residual stress when the two in-plane residual stress
components σ1, σ3, and the average contact pressure σr are given
as inputs. When this happens, there is a high chance that the
underlying relationship 5(σ1, σ3, σr) can be represented by a
simple model. Motivated by this, the data was systematically
analyzed with respect to the interdependencies using an ANN. To
this end, physical knowledge was incorporated in the formulation
of the ANN inputs and output. The authors studied the ANN
prediction error by feeding the following information as inputs:
indentation depth to spherical indenter radius h/R, normalized
Mises stress σf /σr , and normalized hydrostatic pressure p/σr .
As not explicitly illustrated in the original contribution by the
authors, a sequential omission of single inputs reveals an error
pattern in the predicted output specific for each input, see
Figure 10. Therefore, as major outcome of the applied machine
learning approach, it can be concluded that both the normalized
von-Mises stress and hydrostatic pressure are equally important
to solve the problem. The model published by Heerens et al.
(2009) is based on this insight and would not exist without
the intermediate step of using the ANN. While the ANN was
descriptive and limited to the range of training data, the derived
model is general and predictive.

Ghosh et al. (2014) used amultilayer neural network to predict
the porosity, the yield strength, the ultimate tensile strength and
the elongation of aluminum alloys during solidification, based
on input parameters, such as solidus velocity, initial hydrogen

content as well as spatial and temporal thermal gradients. The
training error and number of cycles were reduced via numerical
optimization of the ANN training structure by using the
quasi-Newtonian Broyden-Fletcher-Goldfarb-Shanno algorithm
(Nocedal and Wright, 2006). Good agreement between ANN
predictions and empirically determined mechanical properties
was obtained.

The effective stiffness of high contrast elastic composites
is predicted by Yang et al. (2018), based on a deep learning
approach. They used a multi-layered CNN with a rectified
linear unit (ReLU) function for neuronal activation to model
linkages between microstructure and mechanical properties at
the macroscale. The architecture of a CNN, as shown in
Figure 11, usually consists of a convolutional layer for objective
extraction of important features from two or three-dimensional
images, followed by a pooling layer for reducing feature map
dimensions and a fully connected layer before concluding with
the output layer that consists of one node, yielding the anticipated
material property.

Enhancing the accuracy for predicting mechanical properties
of heterogeneous materials based on image data by using a CNN
in combination with a morphology-aware generative model was
achieved by Cang et al. (2018). The generative machine learning
model was used at low computational cost to generate artificial
but authentic material samples that are required when only a
limited set of original data typically from experiments, is available
for training. Morphology constraints lead to a morphology
distribution of the generated samples that is identical to the one
of the original data. Through a comparison, it could be shown
that this material property distribution matched the original
material property distribution better than that one generated
with a state-of-the-art Markov Random Field model (Li, 1995);
hence an improvement of a predictive structure-property model
was reached.

Prescriptive
The identification of material parameters for constitutive models
is commonly the key for optimization of processes and
for designing parts that undergo complex loading histories.
Irrespective of whether a deterministic or stochastic optimization
algorithm is used, they intend to lead to a set of parameters that
correspond to the best fit. However, it is mostly not clear, if the
result is unique. Huber and Tsakmakis (2001) developed a neural
network tool that allowed identifying the material parameters of
a finite deformation viscoplasticity model with static recovery.
This complex inverse problemwas solved in a very general way by
enriching the information fed to the machine learning approach
via a specifically designed loading history for cyclic loading
with different loading rates and inserted relaxation phases. The
identification process was split into a sequence of specialized
ANNs, which used the results from the previous steps. All inputs
and outputs are defined in dimensionless form. The outputs are
normalized by measurable quantities that incorporate a priori
knowledge, wherever possible, via a simple estimate of the desired
output. This improves the accuracy of the ANN considerably, due
to the reduction of the approximation task to the correction of
the estimate. In this way, the Young’s modulus was determined

Frontiers in Materials | www.frontiersin.org 14 May 2019 | Volume 6 | Article 110

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Bock et al. Machine Learning in Materials Mechanics

FIGURE 10 | Analysis of the interdependency in the nonlinear relationship of hardness ratio by variation of the input information. Top row left: using all inputs; top row

right: omitting indentation depth to spherical indenter radius h/R; bottom left: omitting mormalized Mises stress σf /σr ; bottom right: omitting normalized hydrostatic

pressure p/σr . Omitting an input is visible in a specific pattern of error in the predicted output.

FIGURE 11 | Schematic image of the three-dimensional convolutional neural network (CNN) architecture, containing a convolutional layer for feature extraction, a

pooling layer for dimensionality reduction of feature maps, as well as a fully connected layer and a single-noded output layer, yielding the desired material property.

Reprinted from Yang et al. (2018), Copyright (2018), with permission from Elsevier.

first, then the equilibrium behavior of the nonlinear isotropic
and kinematic hardening rules, and finally the parameters
responsible for viscosity and static recovery terms. Subsequently,
the nonlinear elastic-plastic deformation behavior of thin Al
films was identified by Huber et al. (2002) from nanoindentation
experiments. In contrast to the common rule of maximum
10% indentation depth, the required additional information
for a unique identification was provided by purposely deep
penetration of twice the film thickness. This concept allowed
to break the geometric similarity of the pyramidal indent and

to enrich the input data of the ANN by sufficient independent
information about the mechanical behavior of the film. To
minimize the computational costs for pattern generation, a
strategy was applied, where five patterns served for training and
another five patterns for validation. With each training cycle, the
previous validation patterns were added to the training dataset
and five new validation patterns were generated. Based on this
approach, 40 patterns turned out to be sufficient to achieve
a comparable training and validation error. The enrichment
of the input information by modifying the loading history
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was also key for a successful unique parameter identification
based on spherical indentation tests (Huber and Tyulyukovskiy,
2004; Klötzer et al., 2006; Tyulyukovskiy and Huber, 2006).
The developed identification approach was successfully applied
to determine the material parameters of EUROFER 97 steel.
The high quality of the identified material behavior and the
prescriptive capability for generating very different loading
histories was demonstrated by a comparison of the predicted
stress-strain behavior with cyclic tension-compression tests from
specimens made from the same material.

Conduit et al. (2017) utilized a neural network for the
design of a nickel-based polycrystalline superalloy. Specifically
defined physical criteria were fulfilled by the approach; therefore,
modeling, discovering and optimizing novel alloys with respect
to required design specifications was possible. Experimental
validation of parameters, such as the yield stress, showed that
the relevant properties for a particular application were improved
in comparison to commercially available materials through the
prescriptive discovery of a material composition that is most
suited for the particular use-case. Examples of the successful
application of this approach are the development of a new nickel-
based superalloy for high temperature application (Conduit
et al., 2014) as well as the predictive and prescriptive design
of a molybdenum-based alloy that fulfills desired requirements
such as yield stress and hardness properties for a die-forging
application (Conduit et al., 2018).

PERFORMANCE

When materials are exposed to loads that are significantly
dependent on the temporal scale, the performance of the
material, such as fatigue and failure, become highly relevant.
Specific material behavior that eventually leads to fatigue are
governed by phenomena such as crack initiation, growth, and
coalescence under static and cyclic loading, among others. Using
machine learning approaches for the identification of linkages to
fracture initiation (Jha et al., 2018), crack growth (Younis et al.,
2018) as well as fatigue life performance (Paulson et al., 2018)
is substantial for choosing and designing the best characteristics
along the process-structure-property-performance chain.

Descriptive
To uncover and quantify relevant microstructural factors
influencing the fatigue behavior, Jha et al. (2018) used a
data-analytics approach based on principal component analysis
(PCA) (Jolliffe, 1986) and fuzzy c-means (FCM) clustering
(Bezdek et al., 1984). Through crystal plasticity finite element
(CPFEM) calculations of RVEs, statistically representative for Ti-
6242S microstructures, 33 different metrics (slip and geometry)
for 25 grains, as well as for their neighborhood (8) were
determined. To predict early fatigue crack growth, the Fatemi–
Socie fatigue indicator parameter (FIP) (Fatemi and Socie, 1988)
was calculated from the CPFEM results as well. Jha et al. (2018)
showed that the consideration of single metrics/factors alone is
not sufficient to determine or to rate their influence on the fatigue
behavior. Thus, linear PCA was used to reveal the influence of
the different metrics onto the FIP. This is obtained by analyzing

the FIP value in dependence of the principal components
and identifying the critical regions of principal components
showing a high FIP value. Afterwards, the contribution of
each metric to the principal component (variable coefficients)
leading to the critical regions is obtained. By this analysis, the
authors could conclude that the “microstructural configuration
with high FIP roughly corresponds to a combination of α

particles oriented to produce high normal stress on the basal
plane and a neighborhood that imposes high shear strain”
(Jha et al., 2018). The authors showed that via the suggested
data analysis, contributions of several parameters could be
revealed which would be impossible by direct analysis as well
as by experimental characterization alone. To “reveal unique
microstructural configurations” (Jha et al., 2018) leading to high
FIP values and the occurrence rate of configurations, a clustering
analysis in principal component space was performed. For this
purpose, kernel based PCA in combination with FCM data
clustering is applied. The results of this analysis showed that
only certain configurations have a high FIP, appearing at low
occurrence rate, as expected from experimental observations.

Corrosion is another mechanism that is very complex and
strongly influenced but not only controlled by alloy composition
and microstructure, rather also by the environmental conditions
under which the alloy shall bear mechanical loads. Metallic
biomaterials made from Mg alloys have the potential to be
biodegradable. For implants in form of screws and plates, the
degradation rate needs to be designed such that the implant bears
the load until the bone sufficiently healed and takes over the
mechanical load. The challenge is the large number of parameters
in conjunction with the long duration for a corrosion test.
Based on a very limited number of 69 samples, Willumeit et al.
(2013) applied an ANN to first analyze the most important
parameters and then visualize and identify the dependencies
on all parameters under investigation. As the most important
outcome, it was found that in addition to the concentration of
NaCl, the concentration of CO2 are the two most important
factors that control the corrosion rate. While the first was well-
known, the second was revealed by this study. This finding is
particularly important because the CO2 concentration differs
significantly between in vitro and in vivo experiments. The
trained ANN allows to further design experiments in specific
areas of interest as well as to quantitatively predict the corrosion
rate for given environmental parameters.

Predictive
In general, health monitoring and lifetime prediction for
engineering structures has traditionally been a largely data-
driven area. Recent progress in Bayesian methods and machine
learning, in particular artificial neural networks, has motivated
a considerable number of publications introducing new data-
driven approaches for lifetime prediction (Freitag et al., 2009;
Silverio Freire Júnior et al., 2009; Figueira Pujol and Andrade
Pinto, 2011; Sikorska et al., 2011; Mosallam et al., 2016).

Machine learning has proven beneficial for lifetime
predictions in particular for systems where accurate physical
models for mechanical analysis are absent so far. A typical
example is lifetime prediction for interfaces (e.g., Jia and
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Davalos, 2006). To predict fatigue properties not only on
the microscopic material level but rather on the system
level including factors such as macroscopic geometry, Wang
et al. (2016) proposed a framework based on artificial neural
networks. For a review of machine learning approaches
specifically for crack growth prediction, the reader is referred to
Wang et al. (2017).

Vassilopoulos et al. (2007) used ANNs to predict the
fatigue life of composite materials based on experimental
data that measured only approximately half of the amount
usually required for the analysis. Thus, stress-cycle (S-
N) curves and constant life diagrams (CLDs), which are
helpful for structural designing, could be generated more
efficiently and with satisfying accuracy for 104-107 cycles.
The loading condition investigated, modeled and validated
were tension-tension, tension-compression and compression-
compression, respectively. The R-ratio refers to the different
loading amplitudes imposed onto the specimens (Schijve,
2001). The approach was validated for two different glass-fiber
reinforced polymers (GFRP) with dissimilar laminate sequences,
as shown in Figure 12.

For predicting the fatigue crack growth in aluminum alloys,
Zhi et al. (2016) utilized a recurrent neural network. The linkage
between applied stress load and the resulting crack growth within
the material was approximated via feedback loops at the output
layer. As a result, the fine crack growth evolution could be
accurately simulated, as validated by experiments.

Wang et al. (2017) compared three different machine learning
approaches for predicting fatigue crack growth within aluminum
alloys. Three-layered, fully connected feed forward neural
network (one hidden layer) is advantageous over both radial
basis function network (RBFN) and genetic algorithms optimized
back-propagation network (GABP) so that the optimization
and extrapolation results agreed best with the experimentally
obtained data.

To predict the fatigue strength of numerous steels based
on composition and process parameters, Agrawal et al.
(2014) applied successful machine learning techniques, such
as feature selection, regression and classification through
the use of artificial neural networks, decision trees, and
multivariate polynomial regression. For evaluating the capability
of predicting the fatigue strength of steels, the most promising
parameters were successfully ranked accordingly. Identifying
the salient linkages between composition, processing and
properties was realized through using the open access material
database MatNavi from the Japan National Institute for
Material Science (NIMS)4 (Ogata and Yamazaki, 2012). It
was shown that the most appropriate predictive modeling
technique can vary in dependence on the steel type.
“Hierarchical predictive modeling” was used for sequential
processing of the data at different scales starting with an
initial classification to determine the steel type and followed
by choosing and applying the most appropriate method
for the particular steel grade to predict the fatigue strength
(Agrawal et al., 2014).

4https://mits.nims.go.jp/index_en.html

Further development of successfully applied predictive
modeling techniques to fatigue strengths of steels was used to
build an open access online tool by Agrawal and Choudhary
(2018). The so called Steel-Fatigue-Strength-Predictor (Agrawal
and Choudhary, 2016) is based on data-driven ensemble data
mining based on composition and process characteristics of
steels to predict their fatigue strength5 Datasets on the fatigue
behavior of steel were again taken from the MatNavi materials
database and build into a forward process-structure-property-
performance model. The framework provides a selection of 40
different modeling techniques that are selected based on the
specific properties of the steel alloy(s) of interest. To identify
composition and processing parameters that have a significant
impact on the fatigue strength, feature selection techniques
were applied to determine a small sub-set of the corresponding
attributes. Thus, the model with the highest accuracy is tailored
to the data of specific material in the steel fatigue strength
predictor to provide insight to design preferences for optimal
fatigue strength of parts of various types of steel.

To identify and predict the impact of the microstructure on
the high-cycle fatigue performance, a data-driven mechanical
model of a matrix using crystal plasticity was built by Smith
et al. (2016) and Kafka et al. (2018) for the specific application
of manufacturing drawn tubes of nickel titanium for arterial
stents, as shown in Figure 13. The fatigue crack incubation life
is simulated according to a particular microstructure exposed
to high-cycle fatigue loads. Via a parametric study, the authors
showed that the width of included voids in the material had an
inverse proportional relationship to the fatigue life, whereas the
diameter of the voids showed a direct proportional relation to the
predicted fatigue performance, respectively.

For predicting the dynamic fracture growth and coalescence
in brittle materials and to foresee failure, Moore et al. (2018)
used random forests and decision trees, whereas Schwarzer et al.
(2019) utilized recurrent graph convolutional neural networks.
The overall aim of both studies was to bypass computationally
intensive simulations for predicting fracture evolution. By
applyingmachine learning approaches whose training is based on
high accuracy finite-discrete simulations, prediction of statistic
fracture growth was achieved in a few seconds. Even though
training with simulation results from amicroscale model requires
computational effort, the predictions of fracture growth statistics
and time to failure of thematerial via the trained random forest or
neural network was very efficient. Moore et al. (2018) disregarded
ANNs despite an increase in accuracy of about 10% compared to
random forests, because of the extensive amount of data required
to prevent over-fitting and accompanied computational effort.
Instead, they used random forests and decision trees to efficiently
perform an uncertainty quantification. Schwarzer et al. (2019)
circumvented the challenge of needing a large experimental
dataset that is statistically meaningful via using a significant
number of simulations; thus, the accuracy could be increased.
For that, a deep neural network was used; specifically, a graph
convolutional network for fracture feature recognition within the
material. Subsequently, a recurrent neural network was utilized

5http://info.eecs.northwestern.edu/SteelFatigueStrengthPredictor.
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FIGURE 12 | Constant life diagrams (CLD) obtained via experiments and predicted via an artificial neural network (ANN) for coupons loaded in on-axis direction for

104-107 load cycles for two glass-fiber reinforced polymers (GFRP) with laminate structure (A) [0/(±45)2/0]T and (B) [90/0/(±45)/0]S. Reprinted from Vassilopoulos

et al. (2007), Copyright (2007), with permission from Elsevier.

FIGURE 13 | Schematic overview of the implemented self-consistent clustering method based on an RVE of the material, sliced in the middle to show the matrix phase

and hide inclusion and void phases (except in the first step). The workflow from left to right: training stage (blue) considers (1) gray inclusions and red voids, (2) matrix

strain component (εxx ) of the linear elastic analysis; (3) strain clusters obtained through k-means clustering; and the prediction stage yields (4) plastic shear strain field

from crystal plasticity and (5) the anticipated Fatigue Indicator Parameter. Reprinted from Kafka et al. (2018), Copyright (2018), with permission from Springer Nature.

for modeling the corresponding feature evolution. Training was
achieved with a set of time series of graphs that represent the
results of a total number of 145 simulations. Based on their
initial state, evolution of multiple material properties can be
predicted simultaneously. The error for the averaged fracture
size prediction in comparison to the corresponding simulation
results was 2%, for the fracture size distribution, the error was
13%, and for the predicted time to failure, the absolute error
was 15%. Due to the relatively modest size of the initial dataset
used for training, further accuracy was achieved by training the
network on incorrect predictions that were previously produced
as output. As a result, the loss function could be further reduced;
thus, the network learned from its mistakes and the error of the
predictions could be gradually decreased.

Prescriptive
Performance properties of components that highly depend on
an ideal design of the part can also be optimized via an
improved non-dominated sorting generic algorithm (NSGA)-
II (Deb et al., 2002), as shown by Wang et al. (2011) for the
multi-objective optimization of wind turbine blades, specifically
with respect to ideal so-called maximum power coefficient
and minimum blade mass. Wang et al. (2011) modified the

NSGA-II via incorporating the controlled elitism and dynamic
crowding distance (DCD) methods. Ultimately, the design for
a 5 megawatts wind turbine blade was optimized by increasing
the performance and simultaneously decreasing its mass. Further
examples of prescriptive approaches that strongly touch the field
of control theory can be found (Padhye and Deb, 2011; Gao et al.,
2016; Klancnik et al., 2016) but a discussion of these is out of the
scope of the current paper.

SUMMARY AND OUTLOOK

In conclusion, it was shown that numerous machine learning
approaches are already applied successfully within the field
of continuum materials mechanics, either solely or in various
combinations for performing tasks that are descriptive, predictive
or prescriptive in nature. As a result, acceleration of the discovery
and development of novel materials can be enabled through
highly reliant descriptions, predictions or prescriptions of
anticipated characteristics along the process-structure-property-
performance chain, often in a scale-bridging manner.

Machine learning and data mining approaches need to be
established as standard tools for scientists and engineers that are
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experts in generating data through experiments and numerical
analyses and sit at the key position to their data sources with
the best and most comprehensive access to it (Agarwal and
Dhar, 2014). This can be achieved when materials scientists and
engineers collaborate closely with computer and data scientists,
statisticians, physicists and other experts across various fields to
further incorporate data science tools into established workflows
for solving problems in materials mechanics and engineering.
For example, combining data-driven machine learning and
statistical approaches and traditional constitutive model-based
simulation tools to perform data-driven simulations (Ibáñez
et al., 2018b). In particular, databased and physics-based
modeling can complement one another in the sense that a
combination of purely data-driven approaches with well-tested
physics-based models that are built on known constitutive
equations, leads to creating highly reliant and efficient hybrid
analytics and simulations.

Award-winning algorithms in other learning domains as
diverse as handwritten digit recognition [e.g., using the
standardized MNIST dataset as a benchmark (LeCun et al., 1999)
and AlphaGo for the Go board game (Silver et al., 2017)] are
often noteworthy not only for their performance, but moreover
for their simplicity and lack of complex architectures. It is
thus reasonable to predict that for materials science, learning
algorithms will diverge in both directions, with more composite
methods employing many of the algorithms expounded in
this review, and with simple learning architectures that will
have been proven adaptable and performant within the scope
of most materials research. In this regard, so-called capsules,
which are embedded in multiple layers within a neural network,
exhibit potential for future use, as they achieve improved results
on the MNIST handwritten digit database in terms of highly
overlapping digit recognition with state-of-the-art performance
in comparison to CNNs (Sabour et al., 2017). Thus, they will
also be useful in areas of materials mechanics. Reinforcement
learning is another example of a promising method for future
application within continuum materials mechanics. A successful
application on materials outside continuum material mechanics
was provided by Popova et al. (2018) on applying deep
reinforcement learning for the design of a chemical library,
in particular, to the de novo design of drug molecules with
specifically desired properties. Thus, in general, reinforcement
learning is a suitable approach where materials are involved and
decision-making is required.

As machine learning and data mining are fueled by data,
the availability of useful and comprehensive datasets to machine
learning experts within the field of continuum materials
mechanics needs to be increased through establishing common
data infrastructures and shared databases. One noteworthy
difference between materials mechanics and other, more
traditional machine learning domains is the comparative expense
of obtaining training data, either by experimental gathering or
via simulation. Such simulations can be prohibitively expensive,
which may require new methods of synergizing materials
simulations to machine learning, for example via multi-fidelity
models for generating data for machine learning (Aydin
et al., 2019), which have been shown to realize significant

computational savings. Because data collection and assimilation
may require significant costs, materials data management is
important for data-driven approaches. How to store, archive,
retrieve and share reliable data; including metadata, providing
information on context and content of the data, is essential for
increasing the usefulness of shared data, including information
onwhen, where, how and under what conditions data was created
and the type of data-processing already performed. Additionally,
online tools that are designed for collaborations in research
across various disciplines can help to integrate novel machine
learning and data mining tools into existing workflows. Besides
making decisions along the materials development progress
based on empirical knowledge and instincts, experts would
benefit extremely, in terms of cost and time reduction, by
incorporating data-driven approaches such as machine learning
into the development of materials and their processing. That
way, knowledge that is gained from investigations that were
either successful or failures can be recorded, stored, accessed and
transferred to other challenges; therefore be extremely valuable as
costs can be saved (Kalidindi and Graef, 2015).

Open source tools such as the highly abstracted neural
network library Keras6, which works within the framework
of other libraries such as Tensor flow7, empower scientists
and engineers to efficiently use machine learning and data
mining tools that are implemented with the programming
language Python—the de facto standard programming language
for machine learning. Due to the good readability of Python’s
syntax, the convenience and easy access for machine learning and
data mining newcomers is increased (Chollet, 2018). Another
example for a platform for shared computing and data resources
is UNICORE8, which is a maturely developed software interface
that provides access to a computing and data infrastructure
including high-performance computing, clusters and file systems
(Benedyczak et al., 2016).

Ultimately, proper usage of machine learning and data mining
approaches has to be practiced and made easily accessible
to materials researchers and engineers in order to enable
employment across the range from theoretical foundations to
practical applications. Furthermore, synergies between various
disciplines such as data science and materials science still hold
a substantial potential for applying machine learning tools
most efficiently to face particular challenges within the field of
materials mechanics.
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