Domain adaptation of POS taggers without handcrafted features

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Domain adaptation of POS taggers without handcrafted features. / Rodrigues, Irving M.; Fernandes, Eraldo R.; dos Santos, Cicero N.
IJCNN 2017: the International Joint Conference on Neural Networks. Piscataway: Institute of Electrical and Electronics Engineers Inc., 2017. p. 3331-3338 7966274 (Proceedings of the International Joint Conference on Neural Networks; Vol. 2017).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Rodrigues, IM, Fernandes, ER & dos Santos, CN 2017, Domain adaptation of POS taggers without handcrafted features. in IJCNN 2017: the International Joint Conference on Neural Networks., 7966274, Proceedings of the International Joint Conference on Neural Networks, vol. 2017, Institute of Electrical and Electronics Engineers Inc., Piscataway, pp. 3331-3338, International Joint Conference on Neural Networks, Anchorage, United States, 14.05.17. https://doi.org/10.1109/IJCNN.2017.7966274

APA

Rodrigues, I. M., Fernandes, E. R., & dos Santos, C. N. (2017). Domain adaptation of POS taggers without handcrafted features. In IJCNN 2017: the International Joint Conference on Neural Networks (pp. 3331-3338). Article 7966274 (Proceedings of the International Joint Conference on Neural Networks; Vol. 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IJCNN.2017.7966274

Vancouver

Rodrigues IM, Fernandes ER, dos Santos CN. Domain adaptation of POS taggers without handcrafted features. In IJCNN 2017: the International Joint Conference on Neural Networks. Piscataway: Institute of Electrical and Electronics Engineers Inc. 2017. p. 3331-3338. 7966274. (Proceedings of the International Joint Conference on Neural Networks). doi: 10.1109/IJCNN.2017.7966274

Bibtex

@inbook{00f48f8535564d51896ec4b3ba5d0cd0,
title = "Domain adaptation of POS taggers without handcrafted features",
abstract = "Unsupervised domain adaptation is an attractive option when labeled data is lacking for some domain of interest but is available for other domain. Part-of-speech (POS) tagging is often considered a solved task when enough labeled data is available in the domain of interest. However, when considering a domain adaptation scenario, this is far from true. Several approaches have been proposed for domain adaptation of POS taggers, however as far as we know, all of them are based on handcrafted features. In this work, we employ a machine learning method whose input is exclusively composed of the raw text. This method learns word- and character-level representations (embeddings), and has been successfully applied to intra-domain tasks. We show that this method achieves strong performances on the domain adaptation of English and Portuguese POS taggers.",
keywords = "Informatics, tagging, syntactics, training, Vocabulary, training data, Feature extraction, Business informatics",
author = "Rodrigues, {Irving M.} and Fernandes, {Eraldo R.} and {dos Santos}, {Cicero N.}",
year = "2017",
month = jun,
day = "30",
doi = "10.1109/IJCNN.2017.7966274",
language = "English",
isbn = "978-1-5090-6183-9",
series = "Proceedings of the International Joint Conference on Neural Networks",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "3331--3338",
booktitle = "IJCNN 2017",
address = "United States",
note = "International Joint Conference on Neural Networks, IJCNN 2017 ; Conference date: 14-05-2017 Through 19-05-2017",
url = "https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding",

}

RIS

TY - CHAP

T1 - Domain adaptation of POS taggers without handcrafted features

AU - Rodrigues, Irving M.

AU - Fernandes, Eraldo R.

AU - dos Santos, Cicero N.

PY - 2017/6/30

Y1 - 2017/6/30

N2 - Unsupervised domain adaptation is an attractive option when labeled data is lacking for some domain of interest but is available for other domain. Part-of-speech (POS) tagging is often considered a solved task when enough labeled data is available in the domain of interest. However, when considering a domain adaptation scenario, this is far from true. Several approaches have been proposed for domain adaptation of POS taggers, however as far as we know, all of them are based on handcrafted features. In this work, we employ a machine learning method whose input is exclusively composed of the raw text. This method learns word- and character-level representations (embeddings), and has been successfully applied to intra-domain tasks. We show that this method achieves strong performances on the domain adaptation of English and Portuguese POS taggers.

AB - Unsupervised domain adaptation is an attractive option when labeled data is lacking for some domain of interest but is available for other domain. Part-of-speech (POS) tagging is often considered a solved task when enough labeled data is available in the domain of interest. However, when considering a domain adaptation scenario, this is far from true. Several approaches have been proposed for domain adaptation of POS taggers, however as far as we know, all of them are based on handcrafted features. In this work, we employ a machine learning method whose input is exclusively composed of the raw text. This method learns word- and character-level representations (embeddings), and has been successfully applied to intra-domain tasks. We show that this method achieves strong performances on the domain adaptation of English and Portuguese POS taggers.

KW - Informatics

KW - tagging

KW - syntactics

KW - training

KW - Vocabulary

KW - training data

KW - Feature extraction

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=85030974151&partnerID=8YFLogxK

U2 - 10.1109/IJCNN.2017.7966274

DO - 10.1109/IJCNN.2017.7966274

M3 - Article in conference proceedings

AN - SCOPUS:85030974151

SN - 978-1-5090-6183-9

T3 - Proceedings of the International Joint Conference on Neural Networks

SP - 3331

EP - 3338

BT - IJCNN 2017

PB - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

T2 - International Joint Conference on Neural Networks

Y2 - 14 May 2017 through 19 May 2017

ER -

Recently viewed

Publications

  1. Elution of Monomers from Two Conventional Dental Composite Materials
  2. Individual predictors of adolescents’ vocational interest stabilities
  3. The intention to quit apprenticeships and the role of secondary jobs
  4. Suicide prevention in schizophrenia spectrum disorders and psychosis
  5. Assessing mire-specific biodiversity with an indicator based approach
  6. Rethinking Measurement Equivalence in Comparative Political Research
  7. Noninteracting force/motion control of defective manipulation systems
  8. Environmental performance, carbon performance and earnings management
  9. Lags in the response of mountain plant communities to climate change
  10. A Lyapunov-based Adaptive Control Law for an Electromagnetic Actuator
  11. In situ synchrotron diffraction of the solidification of Mg-RE alloys
  12. The affective relevance of suggestion-focused and problem-focused voice
  13. Masked Autoencoder Pretraining for Event Classification in Elite Soccer
  14. Effect of Thermal Expansion on the Dynamics of Rolling-element Bearing
  15. A control strategy for electromagnetic near and far field calculation
  16. Some studies on Mg alloy reinforced with ceramic discontinuous phases
  17. Concern with COVID-19 pandemic threat and attitudes towards immigrants
  18. Prospective Environmental Life Cycle Assessment of Nanosilver T-shirts
  19. Bulk and local textures of pure magnesium processed by rotary swaging
  20. A review of FEM code accuracy for reliable extrusion process analysis
  21. The Rise and Fall of Electricity Distribution Cooperatives in Germany
  22. A family of exceptional parameters for non-uniform self-similar measures
  23. Passive Rotation Compensation in Parallel Kinematics Using Quaternions
  24. Zur Problematik der Auslegung geschwächter Welle-Nabe- Pressverbindungen
  25. Corrosion behavior and microstructure of a broad range of Mg-Sn-X alloys
  26. Mechanical behaviors of extruded Mg alloys with high Gd and Nd content
  27. Dimension theoretical properties of generalized Baker's transformations
  28. Steady State Detection for the Context Aware Evaluation of Vital Signs