Dispatching rule selection with Gaussian processes

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Dispatching rule selection with Gaussian processes. / Heger, Jens; Hildebrandt, Torsten; Scholz-Reiter, Bernd.
In: Central European Journal of Operations Research, Vol. 23, No. 1, 03.2015, p. 235-249.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Heger J, Hildebrandt T, Scholz-Reiter B. Dispatching rule selection with Gaussian processes. Central European Journal of Operations Research. 2015 Mar;23(1):235-249. doi: 10.1007/s10100-013-0322-7

Bibtex

@article{016051ed68b2451ba5ca60a8cfb7f077,
title = "Dispatching rule selection with Gaussian processes",
abstract = "Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.",
keywords = "Dispatching rules, Gaussian processes, Machine learning, Planning and scheduling, Production management and logistics, Engineering",
author = "Jens Heger and Torsten Hildebrandt and Bernd Scholz-Reiter",
year = "2015",
month = mar,
doi = "10.1007/s10100-013-0322-7",
language = "English",
volume = "23",
pages = "235--249",
journal = "Central European Journal of Operations Research",
issn = "1435-246X",
publisher = "Springer",
number = "1",

}

RIS

TY - JOUR

T1 - Dispatching rule selection with Gaussian processes

AU - Heger, Jens

AU - Hildebrandt, Torsten

AU - Scholz-Reiter, Bernd

PY - 2015/3

Y1 - 2015/3

N2 - Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.

AB - Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.

KW - Dispatching rules

KW - Gaussian processes

KW - Machine learning

KW - Planning and scheduling

KW - Production management and logistics

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=84881500606&partnerID=8YFLogxK

U2 - 10.1007/s10100-013-0322-7

DO - 10.1007/s10100-013-0322-7

M3 - Journal articles

AN - SCOPUS:84881500606

VL - 23

SP - 235

EP - 249

JO - Central European Journal of Operations Research

JF - Central European Journal of Operations Research

SN - 1435-246X

IS - 1

ER -

Recently viewed

Publications

  1. Grazing, exploring and networking for sustainability-oriented innovations in learning-action networks
  2. Integrating the underlying structure of stochasticity into community ecology
  3. Validation of an open source, remote web-based eye-tracking method (WebGazer) for research in early childhood
  4. Globally asymptotic output feedback tracking of robot manipulators with actuator constraints
  5. XOperator - Interconnecting the semantic web and instant messaging networks
  6. Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
  7. Experiments on the Fehrer-Raab effect and the ‘Weather Station Model’ of visual backward masking
  8. Parking space management through deep learning – an approach for automated, low-cost and scalable real-time detection of parking space occupancy
  9. Lyapunov stability analysis to set up a PI controller for a mass flow system in case of a non-saturating input
  10. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation
  11. Different kinds of interactive exercises with response analysis on the web
  12. Harvesting information from captions for weakly supervised semantic segmentation
  13. Understanding the socio-technical aspects of low-code adoption for software development
  14. Introduction Mobile Digital Practices. Situating People, Things, and Data
  15. On the Functional Controllability Using a Geometric Approach together with a Decoupled MPC for Motion Control in Robotino
  16. Fast, Fully Automated Analysis of Voriconazole from Serum by LC-LC-ESI-MS-MS with Parallel Column-Switching Technique
  17. Not in the world: philosophy, anarchism and real alterity
  18. Sustainability-related co-operation among audit committees, internal auditors and external auditors: a survey-based study
  19. How school leadership and innovation shape instructional pathways to student achievement across nations