Dispatching rule selection with Gaussian processes

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Dispatching rule selection with Gaussian processes. / Heger, Jens; Hildebrandt, Torsten; Scholz-Reiter, Bernd.
In: Central European Journal of Operations Research, Vol. 23, No. 1, 03.2015, p. 235-249.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Heger J, Hildebrandt T, Scholz-Reiter B. Dispatching rule selection with Gaussian processes. Central European Journal of Operations Research. 2015 Mar;23(1):235-249. doi: 10.1007/s10100-013-0322-7

Bibtex

@article{016051ed68b2451ba5ca60a8cfb7f077,
title = "Dispatching rule selection with Gaussian processes",
abstract = "Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.",
keywords = "Dispatching rules, Gaussian processes, Machine learning, Planning and scheduling, Production management and logistics, Engineering",
author = "Jens Heger and Torsten Hildebrandt and Bernd Scholz-Reiter",
year = "2015",
month = mar,
doi = "10.1007/s10100-013-0322-7",
language = "English",
volume = "23",
pages = "235--249",
journal = "Central European Journal of Operations Research",
issn = "1435-246X",
publisher = "Springer",
number = "1",

}

RIS

TY - JOUR

T1 - Dispatching rule selection with Gaussian processes

AU - Heger, Jens

AU - Hildebrandt, Torsten

AU - Scholz-Reiter, Bernd

PY - 2015/3

Y1 - 2015/3

N2 - Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.

AB - Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques.

KW - Dispatching rules

KW - Gaussian processes

KW - Machine learning

KW - Planning and scheduling

KW - Production management and logistics

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=84881500606&partnerID=8YFLogxK

U2 - 10.1007/s10100-013-0322-7

DO - 10.1007/s10100-013-0322-7

M3 - Journal articles

AN - SCOPUS:84881500606

VL - 23

SP - 235

EP - 249

JO - Central European Journal of Operations Research

JF - Central European Journal of Operations Research

SN - 1435-246X

IS - 1

ER -

Recently viewed

Publications

  1. Intentionality
  2. Investigation and modeling of the material behavior due to evolving dislocation microstructures in fcc and bcc metals
  3. How generative drawing affects the learning process
  4. Das John-Stuart-Mill-Problem
  5. Jackson networks in nonautonomous random environments
  6. What would Colin say?
  7. Introduction: Habitual Action, Automaticity, and Control
  8. Legitimation problems of participatory processes in technology assessment and technology policy
  9. Nest site selection and the effects of land use in a multi-scale approach on the distribution of a passerine in an island arid environment
  10. Collaborative open science as a way to reproducibility and new insights in primate cognition research
  11. Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium
  12. Self-perceived quality of life predicts mortality risk better than a multi-biomarker panel, but the combination of both does best
  13. Multifractality Versus (Mono-) Fractality as Evidence of Nonlinear Interactions Across Timescales
  14. Spatial Tests, Familiarity with the Surroundings, and Spatial Activity Experience
  15. Applied Conversation Analysis in Foreign Language Didactics
  16. Metamodelizing the Territory
  17. (De)Composing Public Value
  18. Internal forces in robotic manipulation and in general mechanisms using a geometric approach
  19. What role for frames in scalar conflicts?
  20. Vector Fields Autonomous Control for Assistive Mobile Robots
  21. Set-Oriented and Finite-Element Study of Coherent Behavior in Rayleigh-Bénard Convection
  22. Learning to rule
  23. Same but different? Measurement invariance of the PIAAC motivation-to-learn scale across key socio-demographic groups
  24. Conceptual Dimensions of Embodiment
  25. The link between in- and external rotation of the auditor and the quality of financial accounting and audit
  26. The conservation against development paradigm in protected areas
  27. Why a Systematic Investigation of Production Planning and Control Procedures is Needed for the Target-oriented Configuration of PPC
  28. Modeling Bolt Load Retention of Ca modified AS41 using compliance-creep method
  29. Bird's Response to Revegetation of Different Structure and Floristics-Are "Restoration Plantings" Restoring Bird Communities?
  30. Tracing Concepts