Parking space management through deep learning – an approach for automated, low-cost and scalable real-time detection of parking space occupancy

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Balancing parking space capacities and distributing capacity information play an important role in modern metropolitan life and urban land use management. They promise not only optimal urban land use and reductions of search time for suitable parking, but also contribute to a lower fuel consumption. Based on a design science research approach we develop a solution to parking space management through deep learning and aspire to design a camera-based, low-cost, scalable, real-time detection of occupied parking spaces. We evaluate the solution by building a prototype to track cars on parking lots that improves prior work by using a TensorFlow deep neural network with YOLOv4 and DeepSORT. Additionally, we design a web interface to visualize parking capacity and provide further information, such as average parking times. This work contributes to camera-based parking space management on public, open-air parking lots.

OriginalspracheEnglisch
TitelInnovation Through Information Systems - Volume II : A Collection of Latest Research on Technology Issues
HerausgeberFrederik Ahlemann, Reinhard Schütte, Stefan Stieglitz
Anzahl der Seiten14
ErscheinungsortCham
VerlagSpringer Science and Business Media Deutschland GmbH
Datum11.2021
Seiten642-655
ISBN (Print)9783030867966
ISBN (elektronisch)978-3-030-86797-3
DOIs
PublikationsstatusErschienen - 11.2021
Veranstaltung16th International Conference on Business Information Systems Engineering - WI 2021 - Universität Duisburg - Essen, Duisburg, Deutschland
Dauer: 09.03.202111.03.2021
Konferenznummer: 16
https://wi2021.de/start-2.html

Links

DOI